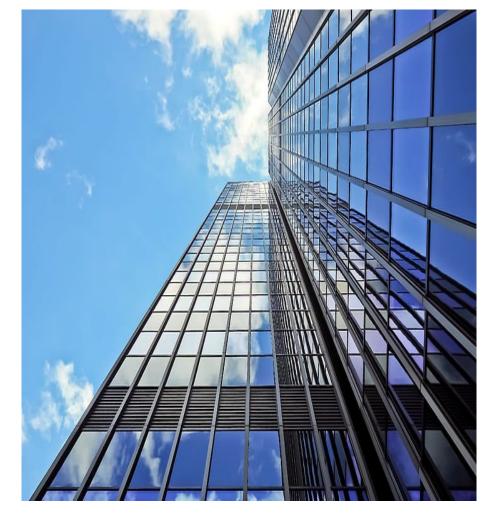
What's New? Updates to the Draft

Code of Practice for Use of Glass in Buildings (DMS 2753)

Ar. Hue Chiun Hau

APAM, LAM


Council Member, PAM (2025/26)

Chairman, Professional Practice Committee (2025/26)

PAM Representative at Jab. Standard Malaysia

Building Inspector, Architect Centre Sdn Bhd

PAM CPD SEMINAR: PRACTICE TALK

Date : 14-June 2025

Venue: Gurney Bay Hotel, Penang

Aluminium, Alloy

Glazing ☑

IGU, Gaskets, Sealants

Performance ✓

Air, Water, Wind

Testing ✓

Structural, Air, Water, Operation

MS 832:2022 MS 1017:2022

Draft- Code
of Practice
Use of Glass In
Building
(DMS2753)

1-Sept 2023: Enforcement of MS832:2022 and MS1017:2022 (Fourth Schedule of CIDB Act520)

14-Oct 2023

25-May 2024

- 1) Department of Standards Malaysia
- 2) Overview Use of Glass

3) Draft COP - DMS 2753

Department of Standards Malaysia

Overview of Department of Standards Malaysia (DSM / JSM)

Introduction

- Established 28-Aug 1996
- Governed by Standards of Malaysia Act 1996 [Act 549]
- Under the Ministry of Investment, Trade, and Industry (MITI)

Key Roles

National Standards Body

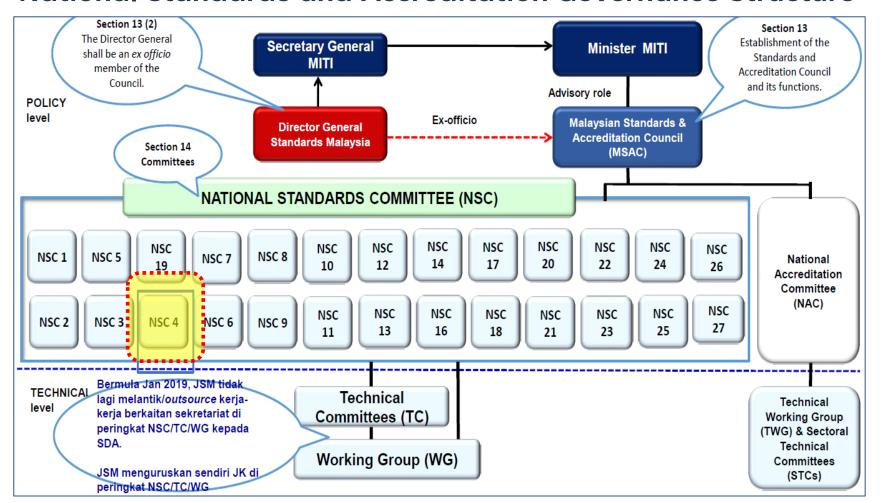
Develop and promote MS

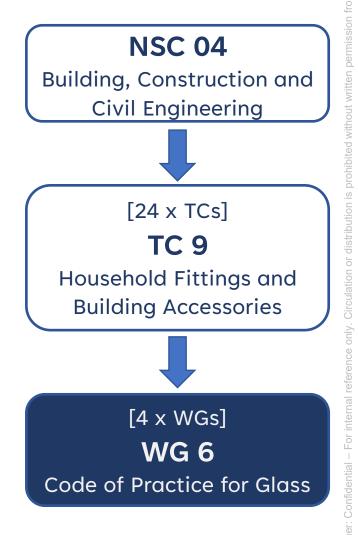
National
Accreditation
Body

Test Lab
Certification body
Inspection body

Overview of Department of Standards Malaysia (DSM / JSM)

OTHER STANDARD DEVELOPING BODIES IN MALAYSIA				
Standard Developing Body	Ministry	Standards	Focus Area	
SIRIM Berhad (Standards and Industrial Research Institute)	Ministry of Investment, Trade and Industry (MITI)	SIRIM Standards	Industrial standards	
Construction Industry Development Board (CIDB)	Ministry of Works (KKR)	Construction Standards	Building materials, construction methods, safety	
Energy Commission (Suruhanjaya Tenaga)	Ministry of Natural Resources, Environment and Climate Change (NRECC)	Electrical Standards	Electrical safety and efficiency	
Department of Occupational Safety and Health (DOSH)	Ministry of Human Resources (KSM)	Safety and Health Standards	Occupational safety and health	
Department of Environment (DOE)	Ministry of Natural Resources, Environment and Climate Change (NRECC)	Environmental Standards	Environmental protection (air, water, waste)	


Overview of Standard Development Process (DSM)


National Standards and Accreditation Governance Structure

Component	Responsibilities	MITI
Minister of International Trade and Industry (MITI)	 Provides strategic direction and oversight for standards and accreditation activities. 	
Malaysian Standards & Accreditation Council (MSAC)	Advises the Minister on standards and accreditation.Formulates policies and strategies.	MSAC
Director General of Standards Malaysia	 Manages implementation of MSAC policies. Ensures alignment with national priorities and international practices. 	DG
National Standards Committee (NSC)	 Develops, reviews, and approves national standards. Coordinates with technical committees and working groups. 	NSC
Technical Committees (TC) & Working Groups (WG)	Consist of sector experts.Draft, review, and update standards.	TC
National Accreditation Committee (NAC)	 Oversees accreditation processes. Ensures competence of conformity assessment bodies. 	WG
Technical Working Group (TWG) & Sectoral Technical Committees (STCs)	 Provide technical expertise and sector-specific insights. Assist in evaluation and accreditation of conformity assessment bodies. 	

Overview of Standard Development Process (DSM)

National Standards and Accreditation Governance Structure

Source: Bengkel Halatuju NSC 04 (Mar 2024)

Overview of Standard Development Process (DSM)

Malaysian Standards (MS) Development Process

1) PROPOSAL PHASE – NEW PROJECT PROPOSAL

2) APPROVAL OF PROJECT BY NSG

3) DRAFTING OF MS BY TC / WG

4) PUBLIC COMMENT (30/60 days)

5) REVIEW AND FINAL EDIT

6) APPROVAL AND PUBLICATION

Overview of Malaysian Standards (MS)

General Types of Malaysian Standards (MS)

Type of Standard	Typical Title Used	Key Purpose	Examples
Code of Practice	Code of Practice	Guidelines for safe and effective practices in various activities or industries.	MS 1184: Universal Design and Accessibility in the Built Environment – Code of Practice
Specification	Specification	Detailed requirements for materials, products, systems, or services to ensure they are fit for their intended purpose.	MS 1064: Part 1: 2011 Fire Grading of Buildings – Specification for Fire Resistant Doorsets and Shutters
Guideline	Guidelines	Recommendations or instructions to assist compliance with specifications or regulations.	MS 1525: Energy Efficiency and Use of Renewable Energy for Non-Residential Buildings - Code of Practice
Terminology	Vocabulary/Glossary	Standardized definitions of terms used in specific fields or industries.	MS 966: Glossary of Terms Used in Building and Civil Engineering
Method of Test	Test Methods	Procedures for testing products or systems to ensure they meet required specifications.	MS 544: Methods of Test for Concrete

Overview of Malaysian Standards (MS)

General Types of Malaysian Standards (MS)

Type of Standard	Typical Title Used	Key Purpose	Examples
Classification	Classification	Systematic arrangement of products, services, or systems into categories based on common characteristics.	MS 1064: Part 2: 2011 Fire Grading of Buildings – Classification of Fire Resistance of Building Elements
Performance Requirements	Performance Requirements	Criteria that products or systems must meet under specified conditions to be considered acceptable.	MS 1477: Performance Requirements for External Thermal Insulation Composite Systems (ETICS) with Rendering
Safety Requirements	Safety Requirements	Criteria and guidelines to ensure the safety of products, services, and systems.	MS 1933: Safety in Building Construction
Environmental Requirements	Environmental Requirements	Criteria and guidelines to ensure products, services, or systems do not harm the environment.	MS 2095: Environmental Requirements for Building Construction Sites

Overview Use of Glass

Use of Glass in Buildings – Essential Material

Why Glass?

Critical Component

Beauty and function in modern buildings

Structural Integrity

Strength and stability to building structures..

Versatility

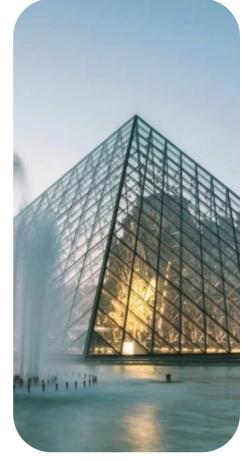
Available in many types to suit various design needs.

Safety and Performance

Helps protect against impact and fire, and improves energy use.

Design Flexibility

Supports creative designs with light and space.



Use of Glass in Buildings – Essential Material

THE STRAITS TIMES

Glass panel breaks in Orchard Central, scaring patrons

Part of the glass panel (top left) above the entrance next to The Coffee Bean and Tea Leaf outlet at Orchard Central shattered, causing glass to fall onto patrons

UPDATED OCT 24 2018 0822 AM -

SINGAPORE (THE NEW PAPER) - Patrons at Orchard Central shopping mall were given a shock on Tuesday afternoon (Oct 23) when a skylight panel broke, causing pieces of glass to rain down.

Ms Low Li Ping, 22, told The New Paper that she was sitting on one of the ground-level benches across from The Coffee Bean and Tea Leaf outlet at the mall when she heard a cracking sound, which she thought was thunder.

A few seconds later, there was another crack and a part of the glass panel above the entrance next to the cafe shattered, causing glass to fall onto patrons sitting nearby.

malaymail

HOME MALAYSIA SINGAPORE MONEY WORLD LIFE EAT/DRINK

SHOWBIZ OPINION SPORTS TECH/GADGETS WHAT YOU THINK

MAT.AVSTA

In Miri, shopping mall's glass ceiling collapses, no one hurt

The glass ceiling of a shopping mall in Lutong suddenly collapsed on

Join us on our WhatsApp Channel, follow us on Instagram, and receive browser elerts for the latest news you need to know.

Monday, 14 Feb 2022 4:13 PM MYT

MIRI, Feb 14 - A section of the glass ceiling in front of a shopping mall in Lutong collapsed yesterday morning.

However, mall authorities confirmed that nobody was injured

Owner charged with negligence over glass bridge that shattered, killing tourist

Thursday, 02 Nov 2023 11:56 AM MYT

JAKARTA: The Banyumas City Police have charged Edi Suseno, the owner and manager of the Geong glass bridge, with negligence over a recent fatal accident at the Central Java tourist site and have found that he owns two other similar attractions in the area.

"We have determined that the manager is a suspect and he has since been detained," said Banyumas City Police chief Edy Suranta Sitepu on Oct 25.

Issues & Challenges

Incorrect glass selection

Inadequate load calculations

Non-Compliance with Safety Standards

Improper Installation Techniques

Lack of Quality
Assurance



Insufficient Documentation

Engineered Safety

Specially designed glass that reduces injury risk when broken, either by resisting breakage or breaking in a safer manner than regular glass

Code Mandated

Required by building codes in hazardous locations such as doors, areas near floor level, balconies, and overhead installations

Certified Performance

Must meet stringent safety
standards and testing
requirements, typically
bearing permanent
markings or labels as
certification

What type of glass is best here?

What thickness of glass should be used?

> What is the maximum size allowable?

> > What tests ensure glass strength and durability

What standards to refer?

> How thick to use?

How do I calculate loads on glass?

materials from overseas?

Can we use glass

Solution – Engineering Calculation

To check whether the original design is adequate; the following parameters are established:

- Glass Balustrade is cantilevered from RC kerb. Embedment of glass measured on site is 100mm and modelled to access stresses and deflection at top of glass.
- 2. Height glass protruding above concrete = 1,100mm
- 3. Type of glass = 12mm thk. Tempered Glass (non-heat-soaked)

STANDARDS & CODE OF PRACTICE

The following standards and codes of practices are adopted for the design:

- 4. BS6399-1:1996 Part 1. Code of Practice for Dead and Imposed Loads
- 5. AS1288:2006 Glass in Buildings Selection and Installation

DESIGN PARAMETERS

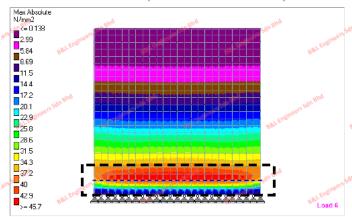
- 6. Parameters of Glass:
 - Modulus of Elasticity = 73,000MPa
 - Density of Glass = 2,500kg/m³
 - Poisson's ratio for Glass, µgl = 0.23
 - Ultimate Limit State Design Stress for 12mm thk. Tempoered Glass = 63.13N/mm² at Edge
- 700 As per clause 3.3.3 of AS1288-2006; and
 - maximum deflection under serviceability limit state for cantilever glass balustrade shall be 1,100mm/30 = 36.66mm, or maximum of 30mm as per Table 7.1.
- 8. Dead load is the self-weight of the glass panel; defined by software
- 9. Imposed load as per Table 4 of BS6399-1:1996:
 - Case I (LL#1) Infill load of 1.0kN/m²
 - Case II (LL#2) A horizontal uniformly distributed line load of 0.74kN/m
- 10. Wind loads of 1.52kN/m2 (WL#1) and -1.73kN/m2 (WL#2) are adopted as per

(Credit: B&L Engineers)

A. Design Brief

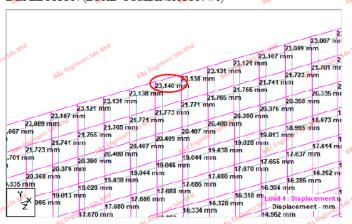
DESIGN PARAMETERS (CONT'D)

- 11. Load combinations (refer BS8110-1:1997 Table 2.1):
 - Load Combination #1
 Service Condition = 1.0DL + 1.0LL#1
 Ultimate Condition = 1.4DL + 1.6LL#1
 - Load Combination #2
 Service Condition = 1.0DL + 1.0LL#2
 Utlimate Condition = 1.4DL + 1.6LL#2
 - Load Combination #3
 Service Condition = 1.0DL + 1.0WL#1
 Ultimate Condition = 1.4DL + 1.4WL#1
 - Load Combination #4
 Service Condition = 1.0DL + 1.0WL#2
 Ultimate Condition = 1.4DL + 1.4WL#2


Table 2.1 — Load combinations and values of y_t for the ultimate limit state δ

	anginee	Load	type	neineer	
De	ad	Imp	osed 881	Earth and	Wind
Adverse	Beneficial	Adverse	Beneficial	pressure	
1.4	1.0	1.6	0	1.4	_
1.4	1.0	_	_	1.4	1.4
1.2	1.2	1.2	1.2 Sdn Ph	1.2	1.2
	Adverse 1.4 1.4	1.4 1.0 1.4 1.0	Dead Imp	Adverse Beneficial Adverse Beneficial 1.4 1.0 1.6 0 1.4 1.0 — —	Dead Imposed Earth and water

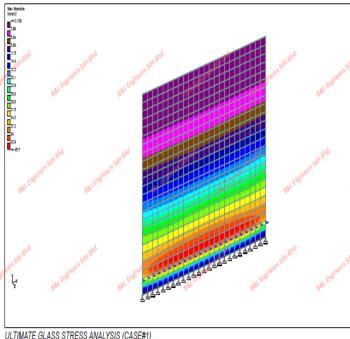
Solution – Engineering Calculation


B. Result of Analysis

GLASS STRESS ANALYSIS (LOAD COMBINATION #1)

Ultimate Stress in Glass = 45.7N/mm²

DEFLECTION (LOAD COMBINATION #1)



Deflection = 23.140mm

(Credit: B&L Engineers)

Plate Center Principal Stress Summary

			Prin	cipal	Von	Mis	Tre	sca
sdn Bha	Plate	sdn ^{8ma} L/C	Topositi	Bottom	Top	Bottom	Top	Bottom
eers	contree!	9	(N/mm²)	(N/mm ²)	(N/mm²)	(N/mm ²)	(N/mm ²)	(N/mm²)
Max (t)	228	7:1.4DL + 1.6LT	64.775	-14.895	58.765	58.835	64.775	64.851
Max (b)	225	13:1.4DL + 1.4\	-15.912	69.147	62.797	62.728	69.223	69.147
Max VM (t)	225	13:1.4DL + 1.4\	-15.912	69.147	62.797	62.728	69.223	69.147
Max VM (b)	225	13:1.4DL + 1.4\	-15.912	69.147	62.797	62.728	69.223	69.147
Tresca (t)	_{Jn} 228	13:1.4DL + 1.4	-15.912	69,147	62.797	62.728	69.223	69.147
Tresca (b)	228	13:1.4DL + 1.4\	-15.912	din ^{ee} 69.147	62.797	62.728	69.223	69.147

C. Summary of Design Review

ULTIMATE LIMIT STATE DESIGN STRESS (N/MM2)

Load Combination	Acceptable	Result of Analysis	Remarks
#1 #1	63.13	ntineers 45.7	ineers OK
#2	63.13	64.9	FAILED
#3	63.13	60.8	OK
#4 _{Edn Bhd}	63.13 salm tehr	69.2 sidn gind	FAILED 5411 B

DEFLECTION OF GLASS BALUSTRADE (MM)

een	Load Combination	Acceptable	Result of Analysis	Remarks
	#1	30.0	23.14	OK
	#2	30.0	41.085	FAILED
	alengh#35dn	30.0° sun	35.172 sdn	FAILED
	#4	30.0	40.031	FAILED

CONCLUSION

- 1. Glass balustrade failed against horizontal line load on both stress and deflection.
- 2. Glass balustrade also failed against wind pressure on both stress and deflection.
- 3. Thickness of glass balustrade has been insufficiently provided.

Any Better Way for The Architect / Designer?

Code of Practice Use of Glass in Building (Draft) (DMS 2753)

Introduction

- Proposal approved in 2018
- Title: "Use of Glass in Buildings Code of Practice"
- Part 1: Selection of Glass
 - Criteria for selecting the appropriate type for different applications
- Part 2: Design and Analysis
 - Guidelines on the design and analysis of glass structures, including load calculations and testing procedures

Scopes & Objectives

Provides a set of guidelines that help in:

- Glass Selection Functional and performance needs.
- Structural Design Resistance to loads and environmental factors.
- Performance Testing Safety and compliance standards.

DRAFT MALAYSIAN STANDARD

16D014R0

Use of glass in building – Code of Practice: Part 1- Selection of glass

ICS: 81.040.20

escriptors; ceramic tiles, grouts, adhesives, terms, definitions, specifications

© Copyright 2023
DEPARTMENT OF STANDARDS MALAYSIA

Committee Representation in Working Group (NSC 04/ TC 9/WG 6)

- Department of Standard Malaysia (Secretariat)
- Dewan Bandaraya Kuala Lumpur (DBKL)
- Federation of Malaysian Manufacturers (FMM)
- Fenestra Malaysia Sdn Bhd
- Glass and Glazing Standards Review Association (GGSRA)
- Jabatan Kerja Raya Malaysia (JKR)
- Malaysia Glass Association (MGA)
- Malaysia Green Building Council (MGBC)
- Malaysian Institute of Interior Designers (MIID)
- Pertubuhan Arkitek Malaysia (PAM)
- Safety Glass Processors Association of Malaysia (SGPAM)
- SIRIM QAS International Sdn Bhd (SIRIM)
- The Chartered Institute of Building Malaysia (CIOB)
- The Institution of Engineers, Malaysia (IEM)

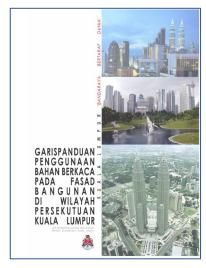
DRAFT MALAYSIAN STANDARD

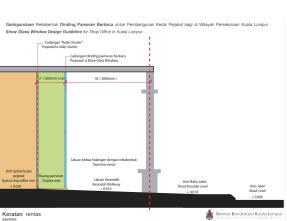
16D014R0

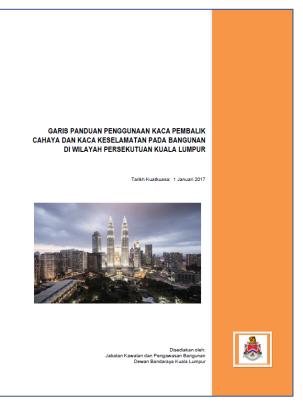
Use of glass in building – Code of Practice: Part 1- Selection of glass

ICS: 81.040.20

Descriptors: ceramic tiles, grouts, adhesives, terms, definitions, specifications


© Copyright 2023


DEPARTMENT OF STANDARDS MALAYSIA


Examples of Standards and Guidelines - Glass

Available Guidelines - Examples

CIDB Act 520 - Fourth Schedule (Mandatory)

- 4. Glass
 - (a) Float glass
 - Clear float glass, non-wired or non-coloured MS 1135 throughout the mass, other than square or rectangular shape (including those with one, two, three or four corners cut)
 - (ii) Tinted float glass, coloured throughout the mass MS 1135 (body tinted), opacified, flashed or merely surface ground, other than optical glass
 - (b) Coated glass MS 2397
 - c) Safety glass MS 1498
 - (d) Wired glass MS 2676

Updates To The DMS2753

Examples of Standards and Guidelines - Glass

MS 1135	MS 2397	MS 1498	MS 2676	DMS 2753
Float glass specification	Coated glass specification	Safety glass specification	Wired glass specification	Glass selection and structural design
Float glass types/shapes	Coating specs only	Tempered & laminated glass	Embedded wired glass	All key glass design considerations

Purposes

Provides comprehensive guidelines for the design, construction, testing, quality assurance, and installation of glass structures or elements in buildings.

Design Considerations

In the Code, the limit state design principle is adopted for structures using glass with the aim to achieve the following:

Overall Stability and Buckling Resistance	Ensure stability and resistance to buckling under design loads.
Strength Against Collapse	Prevent collapse under design loads and deformations of supporting structures.
Integrity and Robustness	Maintain integrity and robustness to prevent progressive collapse under design loads.
Serviceability	Ensure glass structures remain serviceable under design loads and deformations.
Water and Air Tightness	Guarantee watertight and airtight performance.
Durability	Provide long-lasting performance.
Quality	Maintain high-quality standards in glass production and installation.
Maintainability	Ensure ease of maintenance throughout the design working life.

Design References – Examples:

Reference	Title	Country
AS1288:2006	Glass in Buildings - Selection and Installation	Australia
AS3740:2010	Waterproofing of Domestic Wet Areas	Australia
BS6262:2014	Glazing for Buildings (Part 1 and Part 4)	UK
BS EN14179-1:2016	Glass in Building - Heat Soaked Thermally Toughened Soda Lime Silicate Safety Glass (Part 1)	EU
BS 476-22	Fire Tests on Building Materials and Structures (Part 22)	UK
ISO 9050	Glass in Building - Determination of Light Transmittance, Solar Direct Transmittance, Total Solar Energy Transmittance and Ultraviolet Transmittance	International
Building Department, Hong Kong	Code of Practice for Structural Use of Glass (2018)	Hong Kong
JGJ 113-2015	Technical Specification for Application of Architectural Glass	China
CCPS (India)	Guidelines on Use of Glass in Buildings - Human Safety	India

Normative References – Examples:

Normative references are important documents needed to use the main standard properly. They provide the rules and guidelines that help ensure the standard is followed correctly and consistently

Source	Title
MS 1135	Float Glass – Specification
MS 2753-1:2023	Code of Practice for Use of Glass in Buildings - Part 1: Selection of Glass
MS 1498	Safety Glass in Building – Specification
MS 2397	Coated Glass in Building – Specification
MS 2666	Glass in Buildings - Insulating Glass Unit (IGU) - Performance and Evaluation
MS 2676	Wired Glass – Specification
MS 1057	Specification for Adjustable Louvre Windows
MS 1553	Code of Practice on Wind Loading for Building Structure
MS 1525	Energy Efficiency and Use of Renewable Energy for Non-Residential Buildings - Code of Practice
MC EN 1001_1_4	
MS EN 1991-1-4	Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions

Key Content - Part 1

Types of Glass Usages	Glass Fixing Methods	Glass Installations
Facades	Mechanical fixing	 Installation techniques,
Windows	Structural silicone glazing	Edge clearance,
Doors	Point-supported glazing	Setting blocks,
Partitions	methods, etc	Glazing gaskets, etc
Balustrade		
Roofs, etc		

DRAFT MALAYSIAN STANDARD

16D014R0

Use of glass in building – Code of Practice: Part 1- Selection of glass

ICS: 81.040.20

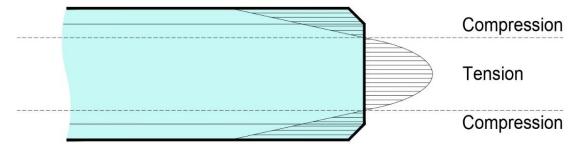
Descriptors: ceramic tiles, grouts, adhesives, terms, definitions, specifications

© Copyright 2023
DEPARTMENT OF STANDARDS MALAYSIA

Key Aspects of DMS2537 (Part 1)

1) Types of Glass and Their Applications

4.2 Glass Types


Annealed glass, also known sheet, plate, float or rolled glass that is processed to allow residual internal stresses to be relaxed so that it can be freely cut...

Heat strengthened glass is produced from annealed glass by first cutting to shape and put under a thermal cycle...

Tempered glass, also known as "fully tempered" or "thermally toughened" glass, is produced in the same way as heat strengthened glass, except that it is quenched more rapidly...

4.3 Glass Assembly

Laminated glass is formed by two or more glass panes bonded by means of an interlayer....

Stress Profile in Tempered Glass

Understanding different glass types and their properties helps in selecting the right material for specific uses.

2) Safety Considerations

16 Criteria for Human Impact Safety

Where any glazing is within 2000 mm above the ground level of all buildings it is considered likely to be subjected to human impact and, hence, shall comply with the human impact safety requirements of this clause....

"Glass is a brittle material. The application of this clause requiring the use of either safety glass or thicker annealed Iglass will reduce the risk of injury from human impact. However, this does not assume that the glass will not be broken under all human impact conditions, but rather it will not be broken under the most likely forms of human impact. When broken, the likelihood of cutting or piercing injuries will be minimized by virtue of the protection given to the glass, or by the limited size or increased thickness, or by the fracture characteristics of the glass...."

- Glass is brittle.
- Safety glass or thicker annealed glass reduces injury risk.
- Glass may not withstand all impacts but handles common human impacts.
- Breakage aims to minimize cutting or piercing injuries.
- Achieved through protection, thickness, and fracture characteristics

Ensuring glass installations meet safety standards, focusing on impact and fire resistance.

Key Aspects of DMS2537 (Part 1)

2) Safety Considerations (Cont'd)

6.2 Doors

Glazing in doors shall be Class 1 - Safety glass that complies with the maximum areas of safety glazing as set out in Table 6.1.

6.3 Side Panels

Glazing in side panels, with the nearest vertical sightlines less than 300 mm from the nearest edge of the doorway opening shall be glazed in accordance with...

16.8 Bathroom, Ensuite and Spa Room Glazing

Glazing, including mirrors, within 2000 mm above the floor level in bathrooms, ensuites, and rooms or enclosures containing bath tub or spa pools shall be Class 1 safety glass or Class 2 safety glass in accordance with...

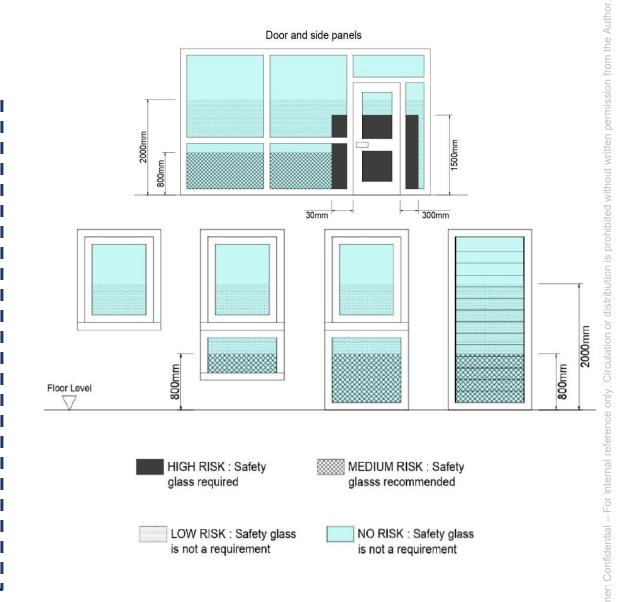


Figure 6.1. Critical locations

Key Aspects of DMS2537 (Part 1)

3) Selection Criteria

14.4 Strength of glass

The strength of glass varies greatly depending on the particular heating and cooling cycle(s) (heat treatment) that are applied in its production resulting in different types of glass. The types of glass commonly used for construction are outlined in clause....

5.1 Energy

Glazed areas in buildings should be designed so that account is taken of the overall energy balance...

15.2 Light

5.3 Sound

Noise, i.e. unwanted sound, can be attenuated by employing thick glazing, insulating units, secondary glazing, laminated glass...

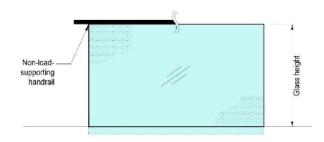
Table 4.2. Ultimate design strength (p_y) for different glass types under short-term load duration

Type of glass	Ultimate design strength (p_y) under short-term load duration (MPa)
Annealed	20
Heat strengthened	40
Tempered	80

Table 4.3. Strength reduction factor (γ_d) applied to p_y for different load durations and glass types

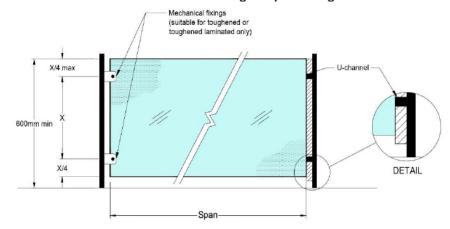
Type of glass	Strength reduction factor (γ_d)			
Type of glass	Short-term load duration	Medium-term load duration	Long-term load duration	
Annealed	1.00	0.53	0.29	
Heat strengthened	1.00	0.73	0.53	
Tempered	1.00	0.81	0.66	

Guidelines for choosing the right type of glass based on projectspecific requirements.


Application of the COP - Example

Designing Glass Balustrade

Step	Action	Details	Clauses (Draft)
1	Identify Classification	Determine if the glass balustrade is a structural panel or an infill panel.	Clause 9.1
2	Determine Load Requirements	Identify the types of loads, including live loads, wind loads, and accidental loads.	Clause 9.2.1 and 9.2.2
3	Select Appropriate Glass Type	Select Class 1 safety glass for the balustrade.	Clause 9.3.1
4	Calculate Nominal Thickness	Determine the standard nominal thickness of the glass based on the specific situation.	Clause 9.3.2 and Table 9.1,
5	Design Handrails	Classify handrails as load-supporting or non-load- supporting, and design accordingly.	Clause 9.2.3
6	Ensure Compliance with Standards	Verify compliance with relevant standards for stability, strength, and serviceability.	MS EN 1991-1-1 and MS 1553, referenced in Clause 9.2.1
7	Review Safety Requirements	Ensure all safety requirements, including impact resistance and fire safety, are met.	Clause 6


Application of the COP - Example

Designing Glass Balustrade

This requires the bottom of the panels to be fully and rigidly fixed for the full length of the panel, usually into a grouted channel. Mechanical fixing method is not covered under this clause.

Figure 9.1. Structural balustrades - Cantilevered glass protecting a difference in level

The glazing panels are supported in a channel or by fixings to vertical posts at each side

Figure 9.2. Structural balustrades - Two-edges support

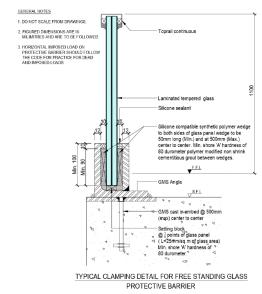


Table 6.1 Maximum areas of safety glass

Class	Type of glazing	Nominal thickness (mm)	Maximum area (m²)
		4	2.2
		5	3
		6	4
	Tempered glass	8	6
		10	8
		12	10
		> 12	Extrapolate
	Tempered laminated glass	8	6
		10	8
		12	10
		> 12	Extrapolate
	Laminated Glass*	6	3
		8	5
		10	7
		12	9
Class 1 safety glass*		> 12	Extrapolate
		6	3
		8	5
	Heatstrengthened laminated glass*	10	7
	idililiated glass	12	9
		> 12	Extrapolate

Table 9.1 Structural balustrade - Cantilevered glass

Design load	Maximum glass height for tempered laminated glass (mm)			
(kN/m)	10	12	16	20
0.35	1 070	1 320	1 750	2 210
0.75	820	1 020	1 360	1 710
1.50	460	630	1 040	1 360
3.00	230	310	520	780
0.60kN*	640	1 020	1 490	2 060
* Point load	-	+	-	

Application of the COP - Example

Designing Glass Window

Step	Action	Details	Clauses (Draft)
1	Identify Glazing Type	Identify Glazing Type Determine if single, laminated, or insulating glass is appropriate for the window.	
2	Consider Design Requirements		
3	Evaluate Environmental Assess environmental impacts such as wind loads and temperature variations.		Clause 7.5.3
4	Determine Safety Requirements	Ensure compliance with safety standards for impact resistance and fire safety.	Clause 6
5	Calculate Glass Thickness Determine the appropriate glass thickness based on load and deflection criteria.		Clause 6.4
6	Select Appropriate Glass Type	Choose between annealed, heat-strengthened, tempered, or laminated glass.	Clause 4.2
7	Review Installation Requirements	Ensure proper installation methods including edge clearance, cover, and rebates.	Clause 10

DRAFT MALAYSIAN STANDARD

Use of glass in building - Code of Practice : Part 2 - Design and analysis

ICS: 81.040.20

Descriptors: glass, loads, sealants, glaze, testing, analysis

© Copyright 2022
DEPARTMENT OF STANDARDS MALAYSIA

Key Aspects of DMS2537 (Part 2)

Key Content – Part 2 – Design & Analysis

Key Content	Subject
Limit State Design	Principles and criteria for limit state design.
Loads	Types and calculations of loads considered in design.
Analysis and Design of Glass Pane	Methods for analyzing and designing glass panes.
Design for Glass Connection	Guidelines for designing connections for glass elements.
Testing and Measurement	Procedures for testing and measuring performance.
Quality Assurance	Ensuring quality and consistency in glass products.
Limit State Design	Principles and criteria for limit state design.

DRAFT MALAYSIAN STANDARD 16D014R0

Use of glass in building - Code of Practice : Part 2 - Design and analysis

ICS: 81.040.20

Descriptors: glass, loads, sealants, glaze, testing, analysis

© Copyright 2022
DEPARTMENT OF STANDARDS MALAYSIA

Key Aspects of DMS2537 (Part 2)

Key Content – Part 2 – Design & Analysis

4.1 Limit State Design

The limit state design considers the functional limits of strength, stability and serviceability of both structural elements and the structure as a whole

5 Loads

All relevant loads should be considered separately and in such realistic combinations as to give the most critical effects on the structural elements and the structure as a whole ...

.1 Glass

For compliance purpose, the glass shall comply with the below standards:

Table 8.1. Glass type compliance requirements

TYPE OF GLASS	RELATED STANDARD
Float Glass	MS 1135
Coated Glass	MS 2397
Safety Glass	MS 1498
Wired Glass	MS 2676
Insulated Glass Unit (IGU)	MS 2666
Heat Soak	BS EN 14179-1 and
	BS EN 14179-2
Fire Rated Glass	BS 476 Part 22

6.3.3 Analysis of laminated glass

Generally, laminated glass should be analysed and designed without the composite action, and the individual glass panes is to resist load shared in accordance with the stiffness of the individual panes.

The strength and stiffness of each individual glass pane shall be checked where the proportion of the total load to be resisted by each pane is k_{pane} .

$$K_{pane} = \frac{t_{pane}^3}{\sum_{s} t_s^3} \tag{6.1}$$

6.3.4 Analysis of IGU

The load sharing between the panes of an IGU can be determined by their relative stiffness. However, such assumption is not valid for glass panes separated by deep cavities. Deep cavities mean the air gap is greater than the sum of the thicknesses of the glass panes. Since the IGU is sealed, it is affected by temperature changes and atmospheric pressure changes. The loads on each glass pane of the IGU have to be increased by 25 % to account for the effects due to temperature changes and atmospheric pressure changes.

The strength and stiffness of each individual glass pane shall be checked where the proportion of the total load to be resisted by each pane is k_{pane} .

$$K_{pane} = \frac{1.25 \times t_{pane^3}}{t^{3}}$$
 (6.3)

6.4 Ultimate limit state design

Ultimate design loads Q_{ult} are obtained by multiplying the characteristic loads Q_{char} by a partial load factor (γ_f) :

$$Q_{ult} = \gamma_f Q_{char} \tag{6.4}$$

Design load effects S_{ult} are obtained from the ultimate design loads

$$S_{ult} = f \text{ (effects of } Q_{ult}) \tag{6.5}$$

Key Aspects of DMS2537 (Part 2)

LOAD CALCULATIONS AND STRUCTURAL ANALYSIS

SAFETY REQUIREMENTS

QUALITY ASSURANCE AND TESTING

Dead loads
Live loads
Wind loads
Thermal loads

Impact and fire resistance Safety glass in hazard zones

Defect-free Installation

Safety and durability

Protection for occupants and property

Reliability and standards compliance

Status

1) NEW PROJECT - PROPOSAL (YEAR 2018)

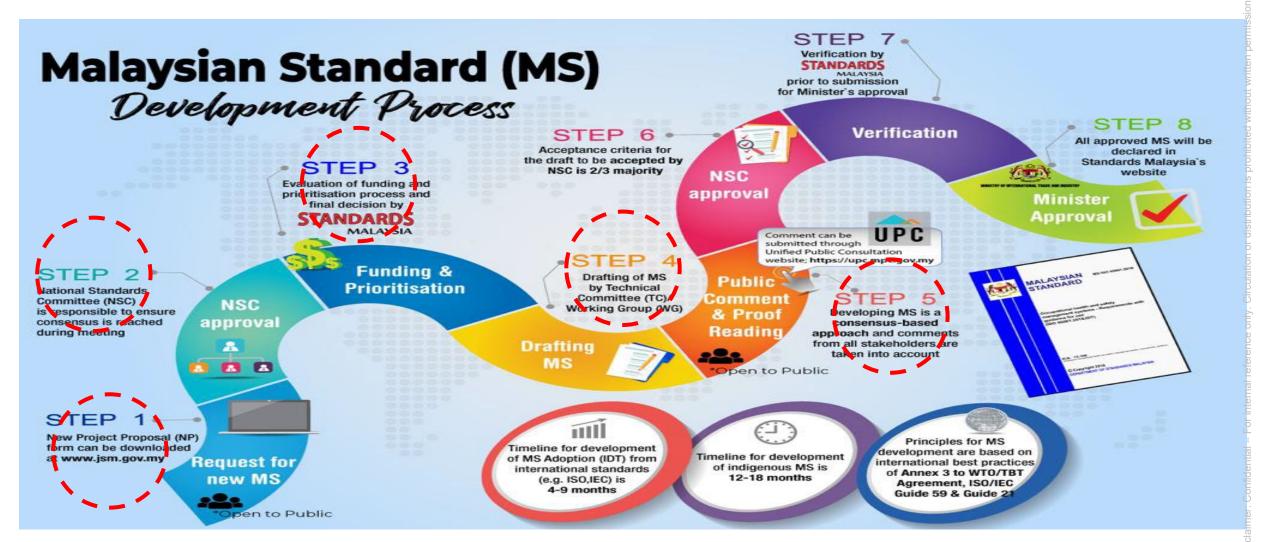
2) NEW PROJECT - APPROVED

3) FUNDING - APPROVED

4) DRAFTING – WORKING GROUP

5) PUBLIC COMMENT (60D) 1-AUG ~ 30-SEP 2024 4A) RE-DRAFT – COMMENTS TARGET : JUN 2025

5A) PUBLIC COMMENT (30D)
TARGET: AUG 2025


6) NSC APPROVAL

TARGET : SEPT 2025

7) MINISTRY APPROVAL TARGET: OCT 2025

8) PUBLICATION
TARGET: OCT 2025

Progress

Will this New MS be Mandatory?

MS IMPLEMENTATION **VOLUNTARY MANDATORY** Relevant Acts of Parliament MINISTRY OF INTERNATIONAL TRADE AND INDUSTRY DEPARTMENT OF STANDARDS MALAYSIA **Regulatory Body** Develop implement MALAYSIAN STANDARD (MS) **Technical Regulation** Mandatory a) Compliance/Reference to MS Voluntary Implementation Conformity assessment requirements -Implementation testing, inspection & certification c) Penalty for noncompliance Industry/ Business/Consumers Complied by * Not all standards can be made mandatory unless it affects safety Industry/ Business/Government of consumers, environment & health

Source: Bengkel Halatuju NSC 04 (Mar 2024)

MS2753 - What's Next?

How Architect & Designer Can Use the New COP?

Guideline for Glass Selection	Use criteria for selecting appropriate glass types based on project requirements.
Design and Analysis	Follow procedures for load calculations and structural analysis.
Safety Compliance	Ensure installations comply with safety standards for impact resistance and fire performance.
Quality Assurance	Implement testing procedures to verify performance and reliability.
Documentation	Maintain documentation to demonstrate compliance with MS2753.

Benefits of Using the COP

Enhanced Safety	High level of safety for building occupants, reducing risks of injuries and accidents.	
Improved Performance	Ensure glass strength, durability, and thermal efficiency, contributing to overa building effectiveness.	
Regulatory Compliance	Meet national and international regulations, facilitating project approvals and inspections.	
Cost Efficiency	Reduce costly errors and rework, ensuring projects are completed on time and within budget.	
Professional Reputation	Demonstrate commitment to quality and safety, enhancing professional reputation.	

THANK YOU