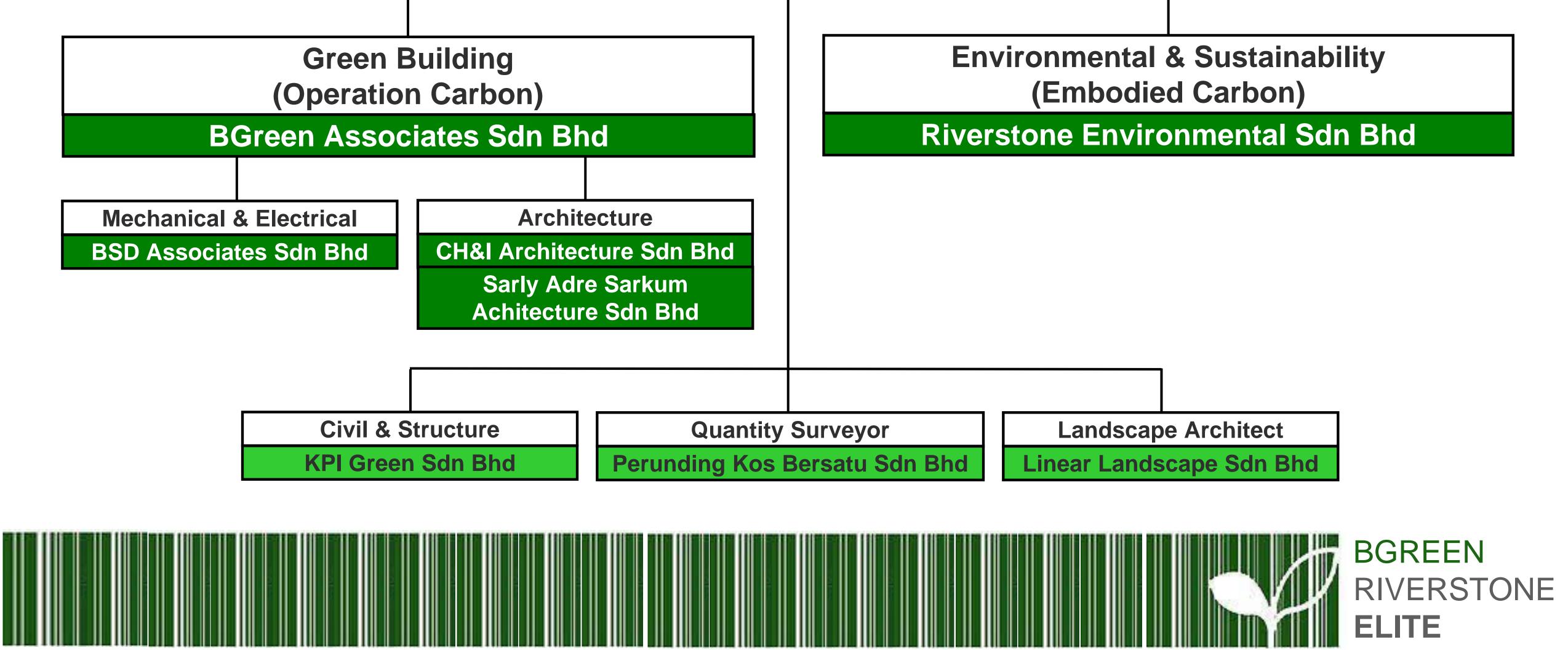

The Art of Designing Green Building Envelop **Michael Ching** 29 June 24

Content

- Introduction 1.
- 2. Green Building GBI vs GreenRE
- 3. Green Building Malaysian Expectation
- 4. Green Façade The Art of Designing
- 5. Green Roof Types & Suitability
- 6. Energy Efficiency and Conservation Act (EECA)
- 7. MPPP GBI Silver/Gold, 50% RE



Introduction

Group (Life Cycle Car

BGreen

of C	ompanies
rbo	Footprint Audit)
Rive	rstone Elite
	Environmental & Sustainability (Embodied Carbon)
	Riverstone Environmental Sdn Bhd
_	
ntity	Surveyor Landscape Architect
Kos E	ersatu Sdn Bhd Linear Landscape Sdn Bhd
	BGREEI

BGREEN RIVERSTONE ELITE

2022 Awards

Malaysia Green Building Council Leadership in Sustainability Award 2022 Best New Green Institutional Building – Winner Best Sustainability Leadership for Consultant – Honorary Mention

Malaysia Ministry of Energy and Natural Resources **National Energy Awards 2022** Energy Efficient Green Building (Large) – Winner

Energy Efficient Green Building (Large) – Runner Up

ASEAN Centre for Energy ASEAN Energy Efficiency and Conservation Best Practices Green Building (Large) – Winner Green Building (Large) – 2nd Runner Up

2023 Awards

- Malaysia Ministry of Energy and Natural Resources **National Energy Awards 2023**
- Green Building (Large) Winner
- Green Building (Large) Merit
- Energy Efficient Green Building (Large) Runner Up (2nos)

ASEAN Centre for Energy ASEAN Energy Efficiency and Conservation Best Practices Green Building (Large) – Winner

2024 Awards

Malaysia Green Building Council

- Leadership in Sustainability Award 2024
- Best New Green Commercial Building
- Best New Green Residential Building (2nos)
- Best New Green Institutional Building

Malaysia Ministry of Energy and Natural Resources **National Energy Awards 2024**

Energy Efficient Green Building (Large)(2nos)

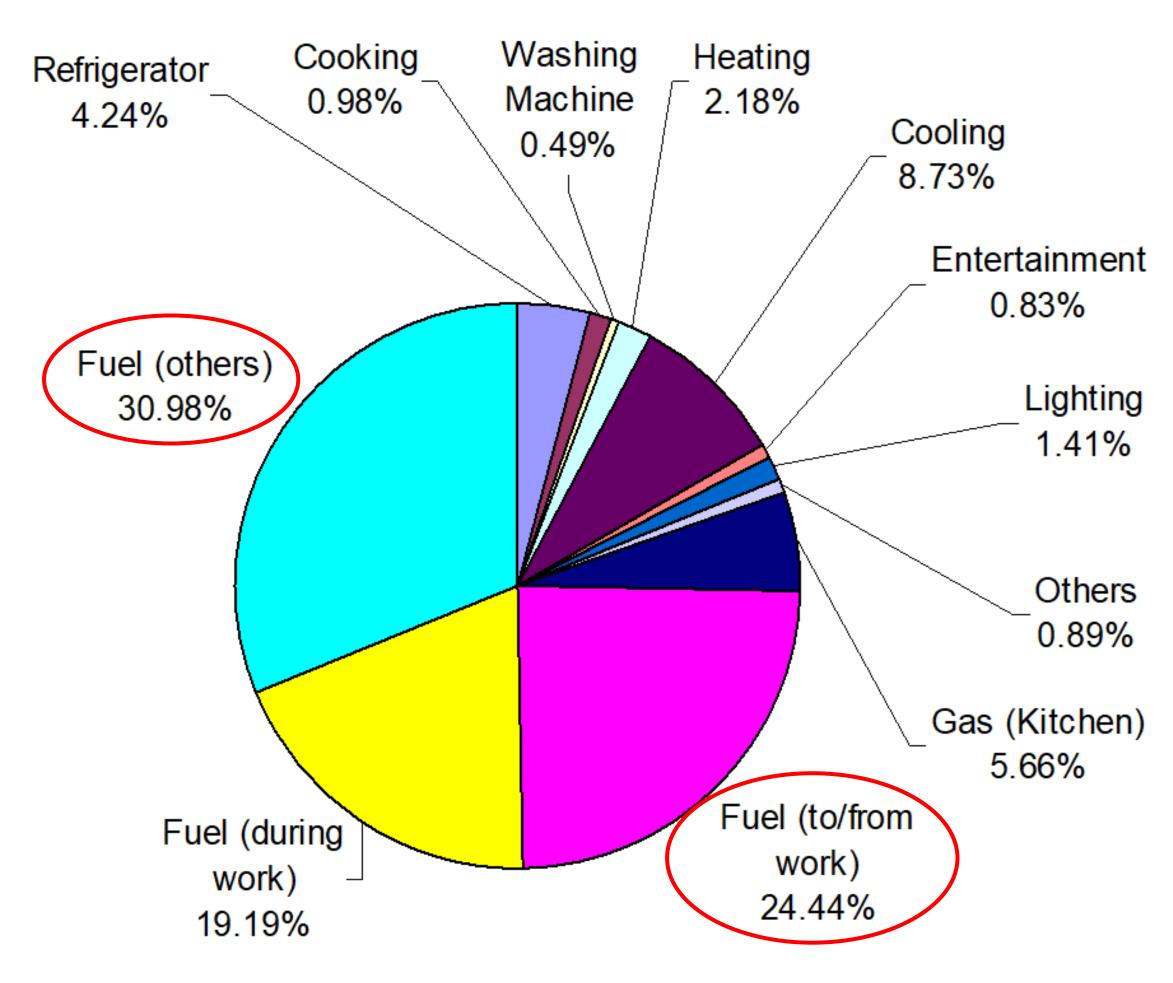
*Pending result. Represent Malaysia for ASEAN Energy Awards

ASEAN Centre for Energy ASEAN Energy Efficiency and Conservation Best Practices Green Building (Large)(2nos)

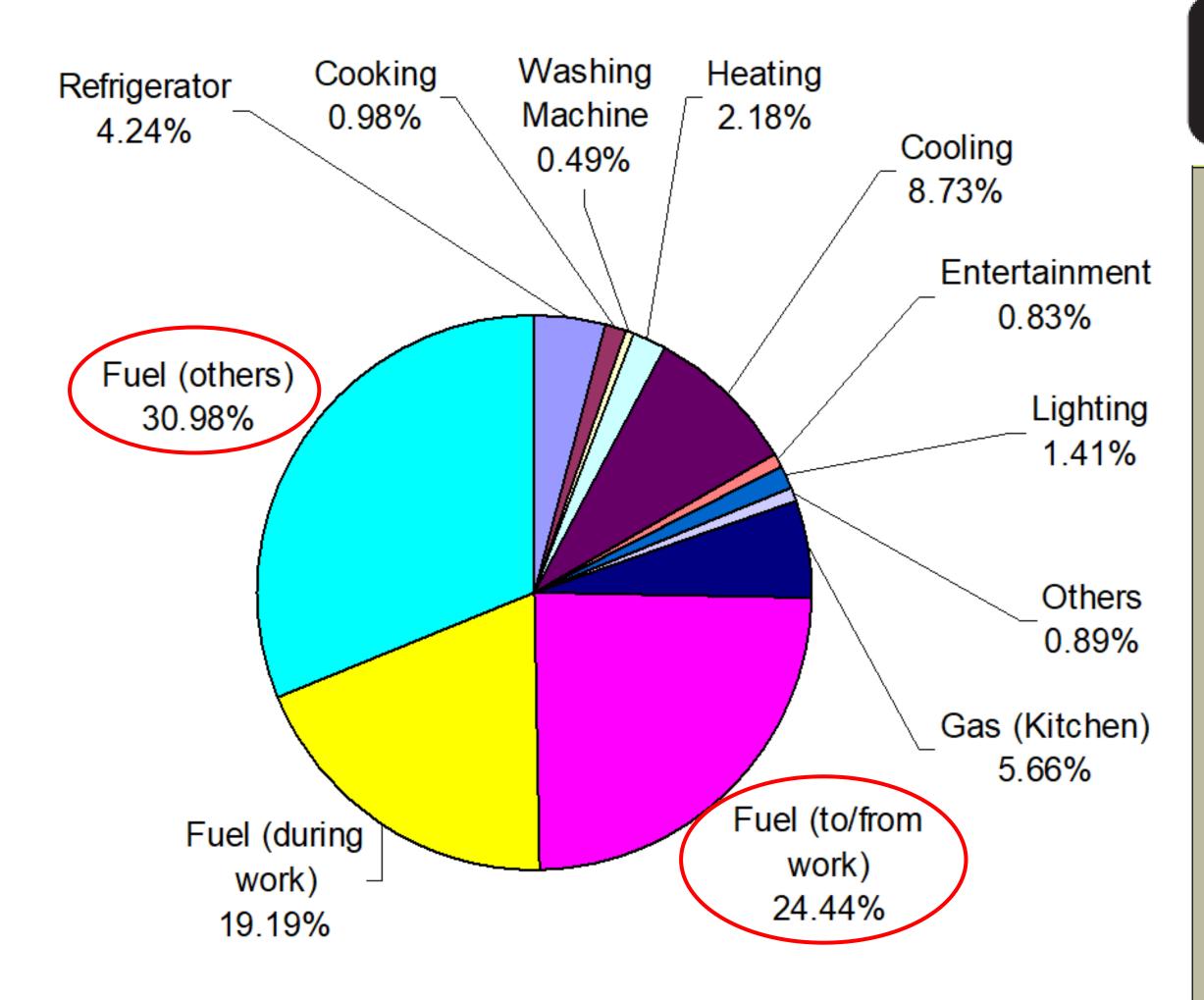
GBI vs GreenRE

	GBI	GreenRE
a. Ownership	PAM + ACEM	REDHA
b. Development	Localised based on Climate, Resources and Priority	Partially localised based on the derivation from Green Mark
c. Administered	WorldGBC MalaysiaGBC	Advisory Panel
d. Registration Fee (Except Mega Project)	RM 5,000 – 45,000	RM 5,000 – 45,000 20% Discount for REHDA Members
e. Minimum Certification Score/Credit	RNC – 50% NRNC – 50%	RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap
f. Score/Credit from Passive Design (Arch)		

a. Ownership

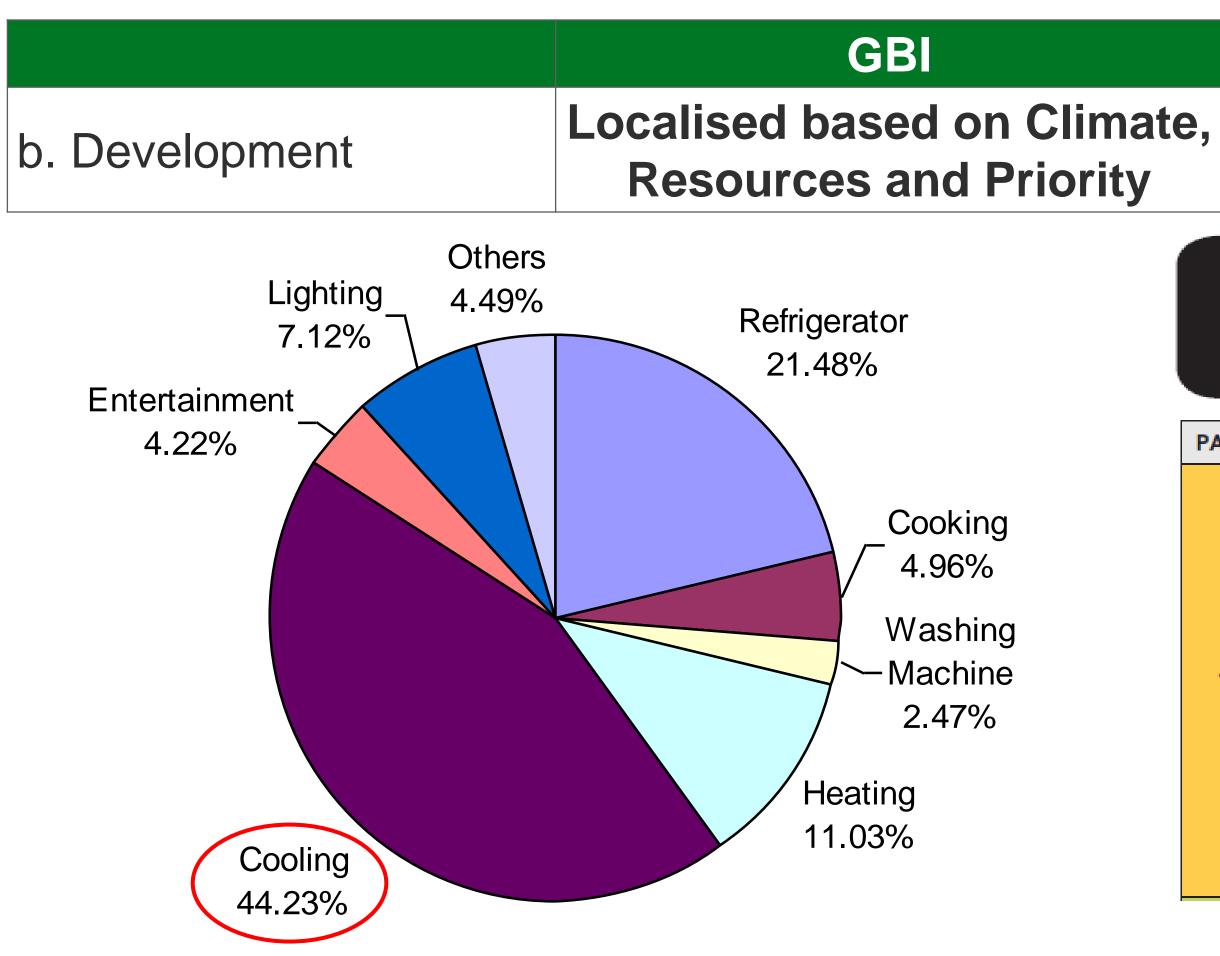

ASSOCIATION OF CONSULTING ENGINEERS MALAYSIA

GreenRE REDHA



te,		GreenRE Partially localised based on the derivation from Green Mark					
GBI ASSESSMENT CRITERIA FOR RESIDENTIAL NEW CONSTRUCTION (RNC)							
Р	ART	ITEM	MAXIMUM POINTS	SCORE			
	1	Energy Efficiency (EE)	23				
	2	Indoor Environmental Quality (EQ)	12				
	3	Sustainable Site Planning & Management (SM)	33				
	4	Material & Resources (MR)	12				
	5	Water Efficiency (WE)	12				
	6	Innovation (IN)	8				
		TOTAL SCORE	100				

GreenRE

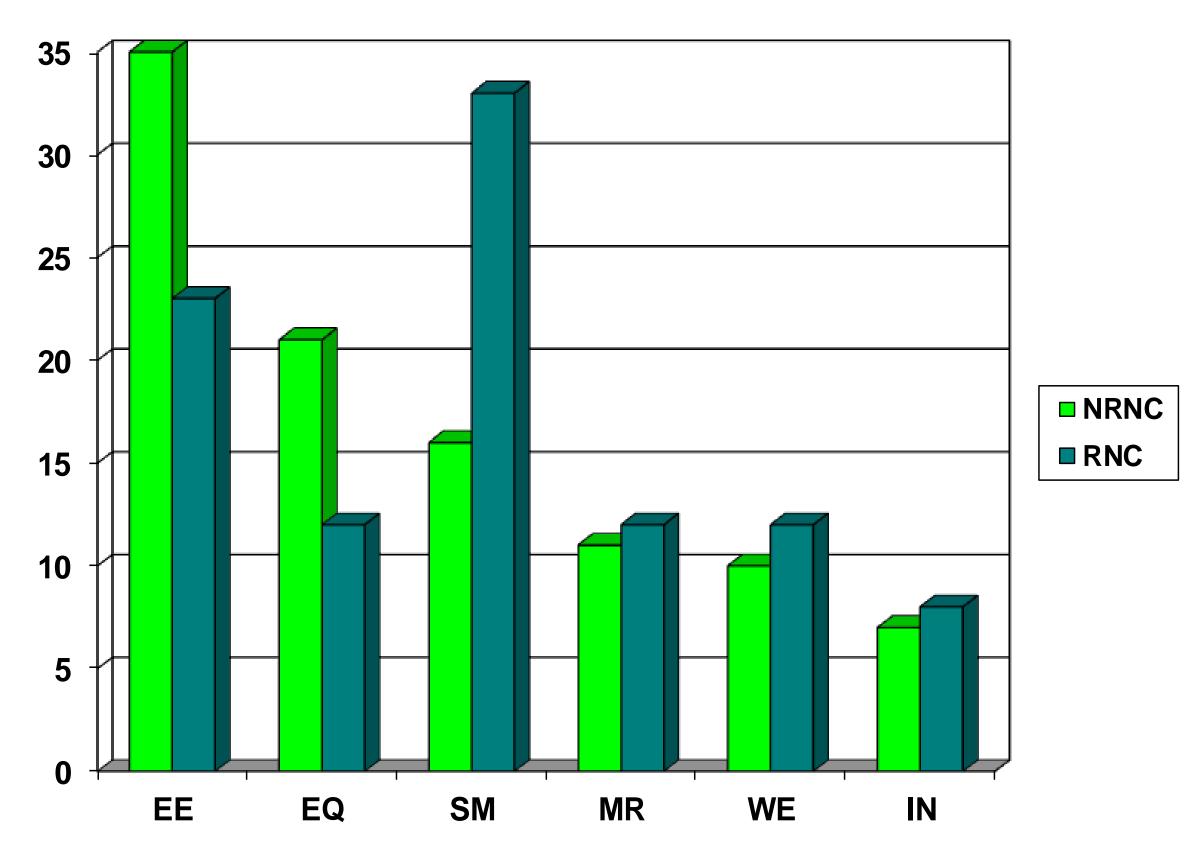

Partially localised based on the derivation from Green Mark

GBI ASSESSMENT CRITERIA FOR **RESIDENTIAL NEW CONSTRUCTION (RNC)**

SM	SUSTAINABLE SITE PLANNING & MANAGEMENT	
Site Planning		
SM1	Site Selection & Planning	1
SM2	Re-habilitation of Brownfield Sites OR Re-development of Existing Buildings	1
SM3	Community Connectivity	4
Construction N	Vanagement	
SM4	Earthworks – Construction Activity Pollution Control	1
SM5	QLASSIC – Quality Assessment System For Building Construction Work	1
SM6 Workers' Site Amenities		1
SM7	IBS – Industrialised Building System	2
Transportation	า	
SM8	Public Transportation Access	8
SM9	Dedicated Cycling Network	2
Design		
SM10	Stormwater Design – Quantity and Quality Control	3
SM11	Heat Island Effect – Greenscape and Water Bodies	5
SM12	Heat Island Effect – Hardscape	2
SM13	Heat Island Effect – Roof	1
SM14	Composting	1

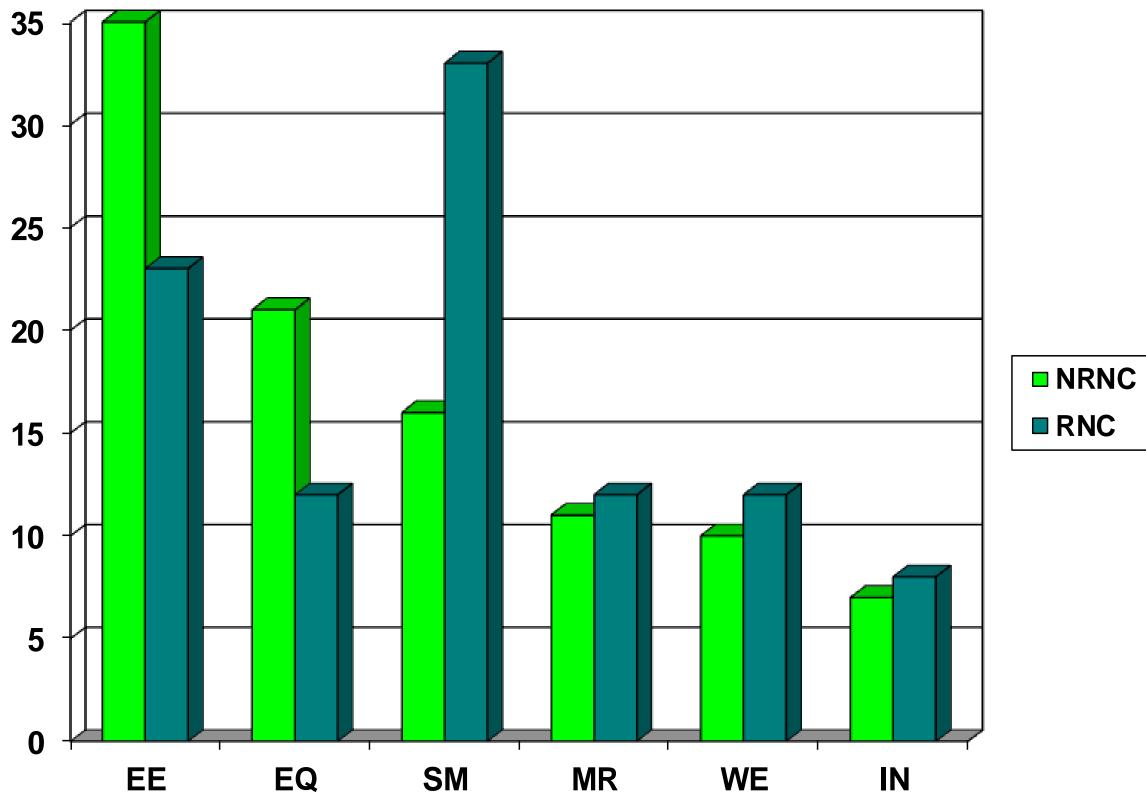
33

GreenRE


Partially localised based on the derivation from Green Mark

GBI ASSESSMENT CRITERIA FOR **RESIDENTIAL NEW CONSTRUCTION (RNC)**

PART	CRITERIA	ASSESSMENT CRITERIA	POINTS	ΤΟΤΑ
	EE	ENERGY EFFICIENCY		
	Design			
	EE1	Minimum EE Performance (Mandatory Compliance)	1	
	EE2	Advanced EE Performance	12	
1	EE3	Renewable Energy	5	
	Energy Efficie	ncy		23
	EE4	External Lighting and Control	2	
	EE5	Internet Connectivity	1	
	Maintenance			
	EE6	Sustainable Maintenance and Building User Manual (BUM)	2	


	GBI
b. Development	Localised based on Climat Resources and Priority

at

te,	GreenRE Partially localised based on the derivation from Green Mark				
	GBI ASSESSMENT CRITERIA FOR NON-RESIDENTIAL NEW CONSTRUCTION (NRNC)				
P/	ART	ITEM	MAXIMUM POINTS	SCORE	
	1	Energy Efficiency	35		
	2	Indoor Environmental Quality	21		
	3	Sustainable Site Planning & Management	16		
	4	Material & Resources	11		
	5	Water Efficiency	10		
	6	Innovation	7		
		TOTAL SCORE	100		

	GBI
b. Development	Localised based on Clima Resources and Priority

GreenRE

ate,

Partially localised based on the derivation from Green Mark

GBI ASSESSMENT CRITERIA FOR **NON-RESIDENTIAL NEW CONSTRUCTION (NRNC)**

PART	CRITERIA	ITEM	POINTS	ΤΟΤΑ	
	EE	ENERGY EFFICIENCY			
	Design				
	EE1	Minimum EE Performance	1		
	EE2	Lighting Zoning	3		
	EE3	Electrical Sub-metering	1		
	EE4	Renewable Energy	5		
1	EE5	Advanced EE Performance - BEI	15	35	
	Commissioning				
	EE6	Enhanced Commissioning	3		
	EE7	Post Occupancy Commissioning	2		
	Verification &	Maintenance			
	EE8	EE Verification	2		
	EE9	Sustainable Maintenance	3		


Malaysia's own Building By-Laws, Building Standards & Guidelines and Codes of Practices into the tools:

- Uniform Building By-Laws(UBBL), including By-Law 38A
- RE Act
- Malaysian Standards such as MS1525 OTTV, BEI, Lighting, etc.
- Local Authorities' Structure/Local Plans
- Local Authorities' Planning, Building Plan, Engineering (ESCP), **RWHS requirement**
- CIDB's QLASSIC and IBS
- DoE Act
- MSMA

ata	
ate,	

GreenRE

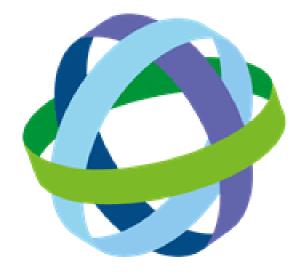
Partially localised based on the derivation from Green Mark

MALAYSIAN STANDARD

MS 1525: 2019

Energy efficiency and use of renewable energy for non-residential buildings -Code of practice (Third revision)

ICS: 91.040.01 Descriptors: energy efficiency, renewable energy, non-residential, buildings, code of practice


© Copyright 2019 DEPARTMENT OF STANDARDS MALAYSIA

GBI

c. Administered

WorldGBC MalaysiaGBC

WORLD GREEN BUILDING COUNCIL

List of sustainable building certifications

Below is a list of building certifications (in alphabetical order) that are administered by our Green Building Councils. This is not a comprehensive list, as there are a number of certifications that exist but are not administered by a Green Building Council.

Green Building Index

GreenRE

Advisory Panel

Find out more

nore

GBI

c. Administered

WorldGBC MalaysiaGBC

GreenRE

Advisory Panel

GBI

d. Registration Fee (Except Mega Project)

RM 5,000 – 45,000

MALAYSIAN PROJECT FEE SCALE

Size of	Total Gross	Assessi	ment Fee (RM)
Development	Floor Area TGFA (m2)	New Buildings	Existing Building
Single Residence	Below 2,000	5,000	3,000
Small	Up to 4,000	8,000	6,000
Intermediate	4,001 - 10,000	10,000	9,000
Medium	10,001 - 30,000	20,000	12,000
Large	30,001 - 50,000	32,000	14,000
Extra Large	50,001 - 100,000	45,000	19,000
Mega Project	>100,001	Assessment fee will be determined on a project-by-project basis.*	

REHDA Members are eligible to 20% discount on assessment fees (excluding SST/GST).

GreenRE

RM 5,000 – 45,000 **20% Discount for REHDA Members**

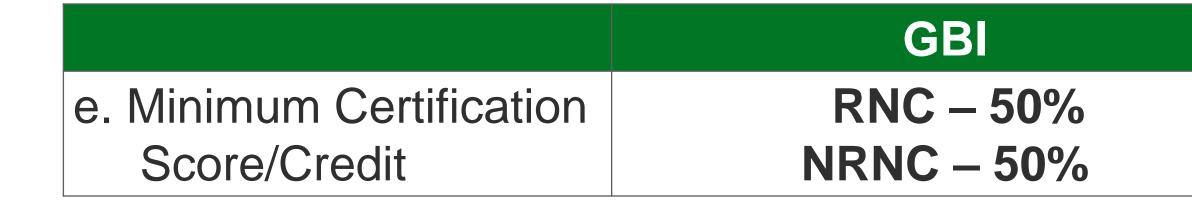
e. Minimum Certification Score/Credit

GBI RNC - 50% NRNC - 50%

Categories of GBI Rating

POINTS	GBI RATING	Score	Rating	RES	NRB
86 to 100 points	Platinum	91 and above	GreenRE Platinum	79.13%	75.83%
76 to 85 points	Gold	86 to ≤ 90	GreenRE Gold	74.78%	71.67%
66 to 75 points	Silver	76 to ≤ 85	GreenRE Silver	66.09%	63.33%
50 to 65 points	Certified	50 to ≤ 75	GreenRE Bronze	43.48%	41.67%

GreenRE


RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap

GreenRE Building Rating System Scoring

GBI Mandatory Requirement

EE1 : Minimum EE Performance

- a. OTTV
- b. Roof U-Value / RTTV
- c. EMS (AC Space $\geq 4000 \text{m}^2$)

GreenRE

RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap

GreenRE Pre-Requisite & Mandatory

<u>Prerequisite & Mandatory Requirements</u> All relevant prerequisite and mandatory requirements for the specific GreenRE Rating are to be complied with

Multi-Storey Residential -Energy Related Requirements Minimum 30 credits

Landed Homes - Energy Related Requirements Minimum 22 credits RES

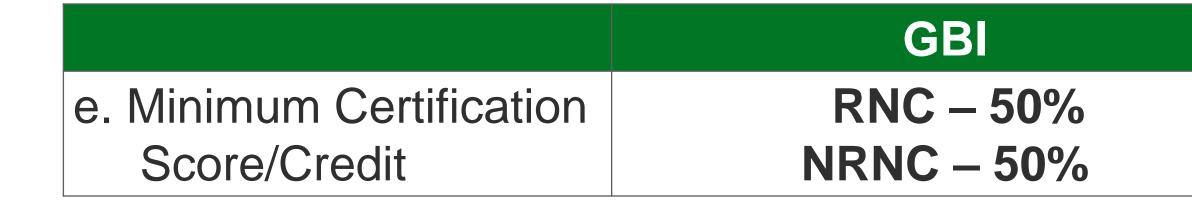
Other Green Requirements Minimum 20 credits

Energy Related Requirements Minimum 30 credits

Shop Lot / Office Minimum 22 credits

NRB

Other Green Requirements Minimum 20 credits



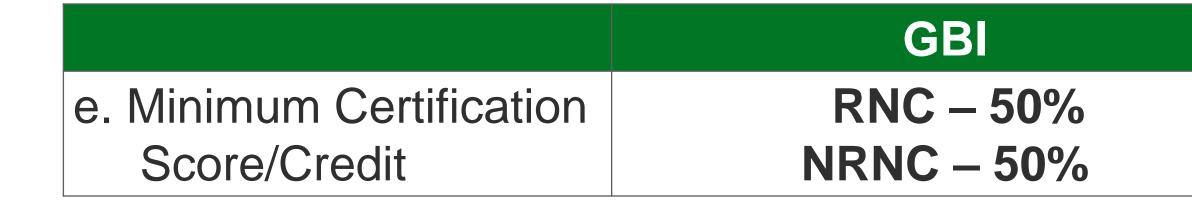
GBI Mandatory Requirement

EE1 : Minimum EE Performance

- a. OTTV
- b. Roof U-Value / RTTV
- c. EMS (AC Space $\geq 4000 \text{m}^2$)

GreenRE

RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap


GreenRE Pre-Requisite & Mandatory (Bronze)

RES (Pre-Requistie)

- 1. 100% AC and/or Ceiling Fan (Dwelling & Common) >ST 3-Stars
- 4. Building User Guide & Sustainable O&M Guidelines
- 5. Calculation of EUI for Highrise Common Area and G&G Landed
- 6. Calculation of Operational and Embodies Carbon
- 7. Roof U-Value

GBI Mandatory Requirement

EE1 : Minimum EE Performance

- a. OTTV
- b. Roof U-Value / RTTV
- c. EMS (AC Space \geq 4000m²)

GreenRE

RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap

GreenRE Pre-Requisite & Mandatory (Bronze)

NRB (Pre-Requistie)

- 1a. >6% Energy Saving
- 1b. Calculation of BEI
- 1c. >10% Potable Water Usage Reduction through Water Efficient Fitting
- 1d. Green Plot Ratio, including Site Inventory Analysis & Carbon Sequestration Calculation
- 1e. Environmental Management Plan (EMP) during Construction
- 1f. Provision of Recycling Bins & Waste Management Route
- 1g. Building User Guide & Sustainable O&M Guidelines
- 1h. ASHRAS 62.1 Ventilation for Acceptable Indoor Air Quality
- 1i. Calculation of Operational and Embodies Carbon
- 2a. Minimum Design System Efficiency(DSE) / Operating System Efficiency (OSE)
- 2b. Measurement and Verification (M&V) Instrumentation (for Centralised AC system)

NRB (Mandatory)

- 1. OTTV
- 2. Roof U-Value / RTTV
- 3. EMS (AC Space \geq 4000m²)
- 4. Provision of Differently-Able Amenities (UBBL, MS1183 Part-8, MS1184, MS 1331, etc)

f. Score/Credit from Passive Design (Arch)

RNC - 37% NRNC - 19%

VERSION 3.0 | JULY 2013

FIRST EDITION | APRIL 2009 | VERSION 1.0

37%

GreenRE

RES (HR) – 37.10% (59/159 points) RES (Landed) – 39.24% (62/158 points) NRB (AC) – 31.94% (46/144 points) NRB (non AC) – 48.64% (71/146 points)

Residential Building & Landed Home Version 3.3 January 2024

Non-Residential Building Version 4.0 June 2023

High-Rise

37%

Landed

39%

AC

32%

Non AC

49%

VERSION 3.0 | JULY 2013

37%

PART	CRITERIA	ASSESSMENT CRITERIA		
	EE	ENERGY EFFICIENCY		
	Design			
	EE1	Minimum EE Performance (Mandatory Compliance)		
	EE2	Advanced EE Performance		
1	EE3	Renewable Energy		
1	Energy Efficie	ncy		
	EE4	External Lighting and Control		
	EE5	Internet Connectivity		
	Maintenance			
	EE6	Sustainable Maintenance and Building User Manual (BUM)		
	EQ	INDOOR ENVIRONMENTAL QUALITY		
	Air Quality			
	EQ1	Minimum Indoor Air Quality Performance		
	EQ2	Volatile Organic Compounds Minimisation		
	EQ3	Formaldehyde Minimisation		
2	Lighting, Visua	al and Acoustic Comfort		
	EQ4	Daylighting		
	EQ5	External Views		
	EQ6	Sound Insulation		
	Evaluation			
	EQ7	Post Occupancy Evaluation		
	SM	SUSTAINABLE SITE PLANNING & MANAGEMENT		
	Site Planning			
	SM1	Site Selection & Planning		
	SM2	Re-habilitation of Brownfield Sites OR Re-development of Existing Buildings		
	SM3	Community Connectivity		
	Construction	anagement		
	SM4	Earthworks – Construction Activity Pollution Control		
	SM5	QLASSIC – Quality Assessment System For Building Construction Work		
_	SM6	Workers' Site Amenities		
3	SM7	IBS – Industrialised Building System		
	Transportation	1		
	SM8	Public Transportation Access		
	SM9	Dedicated Cycling Network		
	Design			
	SM10	Stormwater Design – Quantity and Quality Control		
	SM11	Heat Island Effect – Greenscape and Water Bodies		
	SM12	Heat Island Effect – Hardscape		
	SM13	Heat Island Effect – Roof		
	SM14	Composting		
	1			

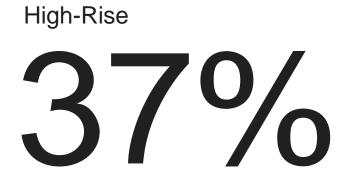
1 12 5 2 2 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1		POINTS	TOTA
12 3 23 23 23 23 23 1 </th <th></th> <th></th> <th></th>			
12 5 23 23 2 1 2 2 2 3 3 2 3 3 2 3 3 3 3 3 1 1 1 1			
23 2 2 2 1 2 2 2 2 2 2 2 3 2 3 2 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1			
23 2 1 2 2 2 2 2 3 3 2 1 3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3			
2 1 2 2 2 2 3 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		5	
1 2 2 3 3 2 1 1 1 1 3 3 1 1 1 1 1 1 1 1		2	23
2 3 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3			
3 2 1 1 3 1 3 2 33 3 3 3 3 3 3 3 3 3 3 5 2 1 3 3 3 1 3 1 3 1 3 1 3 <th></th> <td>I</td> <td></td>		I	
3 2 1 1 3 1 3 2 33 3 3 3 3 3 3 3 3 3 3 5 2 1 3 3 3 1 3 1 3 1 3 1 3 <th></th> <td>2</td> <td></td>		2	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3	
12 3 1 1 1 1 1 1 1 1 1 1 1 1 1		2	
3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 1 3 1 1 3 1 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1		1	
1 1 1 1 1 1 1 1 1 1 1 1 3 2 3 2 3 2 3 1 3 1 1 1 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1			12
1 1 1 1 1 1 1 4 1 1 1 1 1 1 3 2 3 3 5 2 1		3	
1 1 1 1 1 4 4 1 1 1 1 1 2 3 2 3 3 5 2 1 1		1	
1 1 1 4 4 1 1 1 1 1 2 3 3 3 3 3 1 3 1 1 3 1 3 1 1 3 1 3 3 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1		1	
1 1 1 4 4 1 1 1 1 1 2 3 3 3 3 3 1 3 1 1 3 1 3 1 1 3 1 3 3 1 1 3 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1			
1 4 1 1 1 1 2 3 2 3 3 2 3 3 5 2 1	_	1	
1 4 1 1 1 1 2 3 2 3 3 2 3 3 5 2 1	_		
1 4 1 1 1 1 2 3 2 3 3 2 3 3 5 2 1		1	
4 1 1 1 1 2 3 3 2 3 3 5 2 1			
1 1 1 2 3 2 3 3 2 3 3 5 2 1		1	
1 1 2 33 8 2 3 5 2 1		4	
1 1 2 33 8 2 3 5 2 1			
1 2 33 8 2 2 3 5 5 2 1		1	
8 2 3 5 2 1		1	
8 2 3 5 2 1		1	
2 3 5 2 1		2	33
2 3 5 2 1			
3 5 2 1		8	
5 2 1		2	
5 2 1			
1		3	
1		5	
1			
		1	

PART	CRITERIA	ASSESSMENT CRITERIA	POINTS	TOTAL
	MR	MATERIALS & RESOURCES	· · · · ·	
	Reused & Rec	ycled Materials		
	MR1	Materials Reuse And Selection	2	
	MR2	Recycled Content Materials	2	
4	Sustainable Re	esources		
	MR3	Regional Materials	2	12
	MR4	Sustainable Timber	2	
	Waste Manag	ement		
	MR5	Storage and Collection of Recyclables	2	
	MR6	Construction Waste Management	2	
	WE	WATER EFFICIENCY		
	Water Harvesting & Recycling			
	WE1	Rainwater Harvesting	4	
5	WE2	Waste Water Recycling	2	12
	Increased Efficiency		12	
	WE3	Water Efficient Irrigation and Landscaping	2	
	WE4	Water Efficient Fittings	4	
	IN	INNOVATION		
6	IN1	Innovation in Design and Environmental Design Initiatives	7	8
	IN2	Green Building Index Facilitator (GIBF)	1	
		TOT	AL POINTS	100

19%

ENERGY EFFICIENCY EE Design Minimum EE Performance EE1 EE2 Lighting Zoning Electrical Sub-metering EE3 Renewable Energy EE4 1 Advanced EE Performance - BEI EE5 Commissioning Enhanced Commissioning EE6 Post Occupancy Commissioning EE7 Verification & Maintenance EE Verification EE8 EE9 Sustainable Maintenance EQ INDOOR ENVIRONMENTAL QUALITY Air Quality Minimum IAQ Performance EQ1 Environmental Tobacco Smoke (ETS) Control EQ2 Carbon Dioxide Monitoring and Control EQ3 EQ4 Indoor Air Pollutants EQ5 Mould Prevention Thermal Comfort Thermal Comfort: Design & Controllability of Systems EQ6 Air Change Effectiveness EQ7 2 Lighting, Visual & Acoustic Comfort Daylighting EQ8 Daylight Glare Control EQ9 Electric Lighting Levels EQ10 High Frequency Ballasts EQ11 External Views EQ12 EQ13 Internal Noise Levels Verification IAQ Before & During Occupancy EQ14 Post Occupancy Comfort Survey: Verification EQ15

ITEM


CRITERIA

PART

	POINTS	TOTAL	PART	CRITERIA	ITEM	POINTS	TOTAL	
				SM	SUSTAINABLE SITE PLANNING & MANAGEMENT			
				Site Planning				
	1			SM1	Site Selection	1		
	3			SM2	Brownfield Redevelopment	1		
	1			SM3	Development Density & Community Connectivity	2		
	5			SM4	Environment Management	2		
_	15			Construction	Management			
		35		SM5	Earthworks - Construction Activity Pollution Control	1		
	3			SM6	QLASSIC	1		
	2		3	SM7	Workers' Site Amenities	1	16	
				Transportatio	n			
	2			SM8	Public Transportation Access	1		
-	3			SM9	Green Vehicle Priority	1		
				SM10	Parking Capacity	1		
				Design				
	1			SM11	Stormwater Design – Quantity & Quality Control	1		
	1			SM12	Greenery & Roof	2		
	1			SM13	Building User Manual	1		
_	2			MR	MATERIALS & RESOURCES			
	1			Reused & Re	cycled Materials			
					MR1	Materials reuse and selection	2	
	2			MR2	Recycled content materials	2		
	1				Sustainable R			
		21		MR3	Regional Materials	1		
	2		4	MR4	Sustainable Timber	1	11	
	1			Waste Manag	aement			
	1		MR5	Storage & Collection of recyclables	1			
-	1			MR6	Construction waste management	2		
	2			Green Produ	-			
_	1			MR7	Refrigerants & Clean Agents	2		
_				WE	WATER EFFICIENCY			
	2				sting & Recycling			
	2			WE1	Rainwater Harvesting	2		
				WE2	Water Recycling	2		
		5		Increased Eff			10	
			WE3	Water Efficient - Irrigation/Landscaping	2			
				WE4	Water Efficient Fittings	2		
				WE5	Metering & Leak Detection System	2		
				IN	INNOVATION	-		
			6	IN1	Innovation in Design & Environmental Design Initiatives	6		
				IN2	Green Building Index Accredited Facilitator	1	7	
				11.544			100	

Residential Building & Landed Home Version 3.3 January 2024

Landed

39%

	Category
(I)	Energy Related Requirements
	Part 1: Energy Efficiency
edits	RES 1-1 Thermal Performance of Building Envelope -RETV RES 1-2 Naturally Ventilated Design and Energy Efficient Cooling RES 1-3 Daylighting
6	RES 1-4 Artificial Lighting
30	RES 1-5 Ventilation in Carparks
Minimum 30 credits	RES 1-6 Domestic Hot Water System RES 1-7 Lifts
Ē	RES 1-8 Cool Hardscaped Areas
Σ	RES 1-9 Energy Efficient Features
	RES 1-10 Renewable Energy
	Category Score for Part 1 – Energy Efficiency
(II)	Other Green Requirements
	Part 2: Water Efficiency
	RES 2-1 Water Efficient Fittings
	RES 2-2 Water Usage Monitoring
	RES 2-3 Irrigation System and Landscaping
	Category Score for Part 2 – Water Efficiency
	Part 3: Environmental Protection
	RES 3-1 Sustainable Construction
	RES 3-2 Sustainable Products
2	RES 3-3 Greenery Provision
edi	RES 3-4 Environmental Management Practice
5	RES 3-5 Green Transport
50	RES 3-6 Stormwater Management
Ε	RES 3-7 Internet Connectivity
E	RES 3-8 Community Connectivity
Minimum 20 credits	Category Score for Part 3 – Environmental Protection
~	Part 4: Indoor Environmental Quality
	RES 4-1 Noise Level
	RES 4-2 Indoor Air Pollutants
	RES 4-3 Waste Disposal
	RES 4-4 Indoor Air Quality in Wet Areas
	Category Score for Part 4 – Environmental Quality
	Part 5: Other Green Features
	RES 5-1 Green Features & Innovations
	Category Score for Part 5 – Other Green Features
	Part 6: Carbon Emission of Development
	RES 6-1 Carbon Emission of Development
	Category Score for Part 6 – Carbon Emission of Development
	GreenRE Score:

			1
	Credits Al	locations	
	High- Rise	Landed	
	15	22	
	22	22	Ventilation Design – 12 Credits
	6	6	
	8	4	
	6	2	
	3	3	
	2	2	
	2	2	
	15	15	
	85 (Max)	84 (Max)	
	8	8	
	1	1	
	3	3	
	12	12	
	10	10	
	10	10	
	8 8	8	Omit Compositing 7 Credits only
	10	10	Omit Composting – 7 Credits only
	5		
	3	5 3	
	1	ĩ	
	1	1	
	46	46	
	1	1	
	2	2	
	1	1	
	2	2	
	6	6	
			The measure CourseDE course achieve
	7	7	The maximum GreenRE score achieva
	7	7	this does not include 15 bonus credit
			Requirements if a project uses renew renewable energy provision shall not re
	3	3	(i.e from GreenRE Bronze or Silver to C
	3	3	
•	159 (Max)	158 (Max)	
			-

The maximum GreenRE score achievable for a project is capped at 100 credits and this does not include 15 bonus credits that are obtainable under Energy Related Requirements if a project uses renewable energy sources. The credit scored for renewable energy provision shall not result in a double grade jump in GreenRE rating (i.e from GreenRE Bronze or Silver to Gold or Platinum)

Non-Residential Building

Version 4.0 June 2023

Non AC

49%

Categ					
(I) Energy Related Requirements				
	Part 1: Energy Efficiency				
Minimum 30 credits	NRB 1-1 Thermal Performance of Building Envelope – OTTV	Section (A) Applicable to			
	NRB 1-2 Air – Conditioning System	cond. areas			
	Sub -Total (A) – NRB 1-1 to 1-2	<u> </u>			
	NRB 1-3 Building Envelope – Design/ Thermal Parameters NRB 1-4 Natural Ventilation/Mechanical Ventilation	Section (B) Applicable to air- cond. an			
G	Sub – Total (B) – NRB 1-3 to 1-4	1			
n 3	NRB 1-5 Daylighting	Section(C)			
nur	NRB 1-6 Artificial Lighting	Applicable to			
inir	NRB 1-7 Ventilation in Carparks	areas			
Σ	NRB 1-8 Ventilation in Common Areas				
	NRB 1-9 Lifts and Escalators				
	NRB 1-10 Energy Efficient Practices & Features				
	NRB 1-11 Renewable Energy				
	Sub – Total (C) – NRB 1-5 to 1-11				
	Category Score for Part 1 – Energy Efficiency [Prorate Subtotal (A) + Prorate Subtotal (B)] + Subtotal (C)				
(II) Other Green Requirements				
	Part 2: Water Efficiency				
	NRB 2-1 Water Efficient Fittings				
	NRB 2-2 Water Usage and Leak Detection				
	NRB 2-3 Irrigation System and Landscaping				
	NRB 2-4 Water Consumption of Cooling Tower				
	Category Score for Part 2 – Water Efficiency				
	Part 3: Environmental Protection				
	NRB 3-1 Sustainable Construction				
	NRB 3-2 Sustainable Products				
2	NRB 3-3 Greenery Provision				
20 credits	NRB 3-4 Environmental Management Practice				
00	NRB 3-5 Green Transport				
n 2	NRB 3-6 Stormwater Management				
Minimum	NRB 3-7 Refrigerants				
inir	Category Score for Part 3 – Environmental Protection				
N	Part 4: Indoor Environmental Quality				
	NRB 4-1 Thermal Comfort				
	NRB 4-2 Noise Level				
	NRB 4-3 Indoor Air pollutants				
	NRB 4-4 Indoor Air Quality (IAQ) Management				
	NRB 4-5 High Frequency Ballasts NRB 4-6 Access to view from Work Area				
	Category Score for Part 4: Indoor Environmental Quality				
	Part 5: Other Green Features NRB 5-1 Green Features & Innovations				
	Category Score for Part 5: Other Green Features				
	Part 6: Carbon Emission of Development				
	NRB 6-1 Carbon Emission of Development	~+			
	Category Score for Part 6: Carbon Emission of Developmen				
	Category Score for Part 2 to Part 6 – Other Green Requiren	ients			
	GreenRE Non-Residential Building Score:				

	Constitute Allocations	7
	Credits Allocation	-
۹)	15	
e to air-		
as	33	
	48	
3)	30	1
e to non		
areas	20	Ventilation Design – 10 Credits
	50	
;)	6	1
e to all	12	
	4	
	5	
	2	
	12	
	20	
	61	
	111 (MAX)	
		-
		-
	0	-
	8	
	3	
	2	
	2	
	15	
		1
	10	
	10	
	8	Omit Composting – 7 Credits only
	10	
	6	
	3	
	2	
	49	
	2	
	1	
	2	
	2	
	1	
	9	-
	3	-
	7	4
	1	1
	7	The maximum GreenRE score achiev
	^	this does not include 20 bonus cred
	3	Requirements if a project uses rene
	3	
	83	renewable energy provision shall not re
	194 (MAX)	(i.e from GreenRE Bronze or Silver to

The maximum GreenRE score achievable for a project is capped at 100 credits and this does not include 20 bonus credits that are obtainable under Energy Related Requirements if a project uses renewable energy sources. The credit scored for renewable energy provision shall not result in a double grade jump in GreenRE rating (i.e from GreenRE Bronze or Silver to Gold or Platinum)

g. Score/Credit from
Passive Design (Arch)
& Connectivity

RNC - **49%** NRNC - **19%**

VERSION 3.0 | JULY 2013

FIRST EDITION | APRIL 2009 | VERSION 1.0

49%

19%

GreenRE

RES (HR) – 38.99% (62/159 points) RES (Landed) – 41.14% (65/158 points) NRB (AC) – 31.94% (46/144 points) NRB (non AC) – 48.64% (71/146 points)

Residential Building & Landed Home Version 3.3 January 2024

Non-Residential Building Version 4.0 June 2023

High-Rise

39%

Landed

41%

AC

32%

Non AC

49%

VERSION 3.0 | JULY 2013

49%

PART	CRITERIA	ASSESSMENT CRITERIA
	EE	ENERGY EFFICIENCY
	Design	
	EE1	Minimum EE Performance (Mandatory Compliance)
	EE2	Advanced EE Performance
1	EE3	Renewable Energy
1	Energy Efficie	ncy
	EE4	External Lighting and Control
	EE5	Internet Connectivity
	Maintenance	
	EE6	Sustainable Maintenance and Building User Manual (BUM)
	EQ	INDOOR ENVIRONMENTAL QUALITY
	Air Quality	
	EQ1	Minimum Indoor Air Quality Performance
	EQ2	Volatile Organic Compounds Minimisation
	EQ3	Formaldehyde Minimisation
2	Lighting, Visua	al and Acoustic Comfort
	EQ4	Daylighting
	EQ5	External Views
	EQ6	Sound Insulation
	Evaluation	
	EQ7	Post Occupancy Evaluation
	SM	SUSTAINABLE SITE PLANNING & MANAGEMENT
	Site Planning	
	SM1	Site Selection & Planning
	SM2	Re-habilitation of Brownfield Sites OR Re-development of Existing Buildings
	SM3	Community Connectivity
	Construction N	lanagement
	SM4	Earthworks – Construction Activity Pollution Control
	SM5	QLASSIC – Quality Assessment System For Building Construction Work
3	SM6	Workers' Site Amenities
3	SM7	IBS – Industrialised Building System
	Transportation	1
	SM8	Public Transportation Access
	SM9	Dedicated Cycling Network
	Design	
	SM10	Stormwater Design – Quantity and Quality Control
	SM11	Heat Island Effect – Greenscape and Water Bodies
	SM12	Heat Island Effect – Hardscape
	SM13	Heat Island Effect – Roof
	SM14	Composting

	POINTS	TOTAL
	1	
	12	
	5	
		23
	2	
	1	
	2	
	2	
	3	
	1	
		12
	3	
	1	
	1	
	-	
	1	
_		
	1	
	1	
	4	
	1	
	1	
	1	33
	2	
	0	
	8	
	- Aller	
	3	
	3 5	
	2	
	1	
	1	

PART	CRITERIA	ASSESSMENT CRITERIA	POINTS	TOTAL	
	MR	MATERIALS & RESOURCES	<u> </u>		
	Reused & Rec	ycled Materials			
	MR1	Materials Reuse And Selection	2		
	MR2	Recycled Content Materials	2		
4	Sustainable R	esources			
	MR3	Regional Materials	2	12	
	MR4	Sustainable Timber	2		
	Waste Manag	ement			
	MR5	Storage and Collection of Recyclables	2		
	MR6	Construction Waste Management	2		
	WE	WATER EFFICIENCY			
	Water Harves	ting & Recycling			
	WE1	Rainwater Harvesting	4		
5	WE2	Waste Water Recycling	2	12	
	Increased Efficiency				
	WE3	Water Efficient Irrigation and Landscaping	2		
	WE4	Water Efficient Fittings	4		
	IN	INNOVATION			
6	IN1	Innovation in Design and Environmental Design Initiatives	7	8	
	IN2	Green Building Index Facilitator (GIBF)	1	-	
		τοτ	AL POINTS	100	

Residential Building & Landed Home Version 3.3 January 2024

High-Rise

Landed

41%

	Category
(I)	Energy Related Requirements
	Part 1: Energy Efficiency
Minimum 30 credits	RES 1-1 Thermal Performance of Building Envelope -RETV RES 1-2 Naturally Ventilated Design and Energy Efficient Cooling RES 1-3 Daylighting
g	RES 1-4 Artificial Lighting
30	RES 1-5 Ventilation in Carparks
mum	RES 1-6 Domestic Hot Water System RES 1-7 Lifts
Ē	RES 1-8 Cool Hardscaped Areas
Σ	RES 1-9 Energy Efficient Features
	RES 1-10 Renewable Energy
	Category Score for Part 1 – Energy Efficiency
(II)	Other Green Requirements
	Part 2: Water Efficiency
	RES 2-1 Water Efficient Fittings
	RES 2-2 Water Usage Monitoring
	RES 2-3 Irrigation System and Landscaping
	Category Score for Part 2 – Water Efficiency
	Part 3: Environmental Protection
	RES 3-1 Sustainable Construction
	RES 3-2 Sustainable Products
ţs	RES 3-3 Greenery Provision
pa.	RES 3-4 Environmental Management Practice
G	RES 3-5 Green Transport RES 3-6 Stormwater Management
50	RES 3-7 Internet Connectivity
Ľ	RES 3-8 Community Connectivity
Minimum 20 credits	Category Score for Part 3 – Environmental Protection
Z	Part 4: Indoor Environmental Quality
ľ	RES 4-1 Noise Level
	RES 4-2 Indoor Air Pollutants
	RES 4-3 Waste Disposal
	RES 4-4 Indoor Air Quality in Wet Areas
	Category Score for Part 4 – Environmental Quality
	Part 5: Other Green Features
	RES 5-1 Green Features & Innovations
	Category Score for Part 5 – Other Green Features
	Part 6: Carbon Emission of Development
	RES 6-1 Carbon Emission of Development
	Category Score for Part 6 – Carbon Emission of Development
	GreenRE Score:

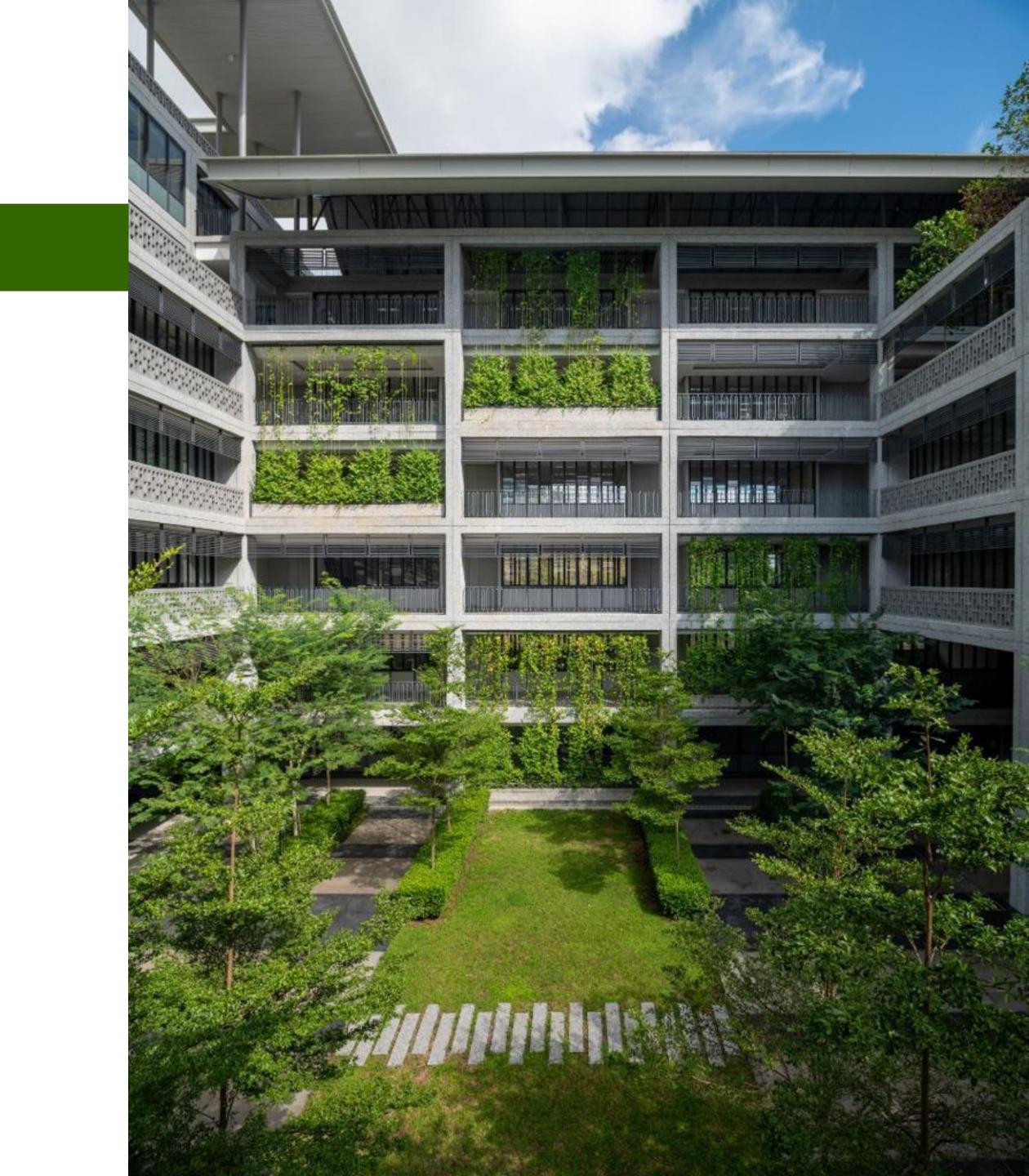
	Credits Allocations			
	High- Rise	Landed		
	_			
1	15	22		
	22	22		
	6	6		
	8	4		
	6	2		
	3	3		
	2	1		
	1 2 7	1 2 7		
	15	15		
	85 (Max)	84 (Max)		
	8 1	8		
	3	1 3		
	12	12		
1	10	10		
	8	8		
	8	8		
	10	10		
	5 3	5 3		
	3	3		
	1	1		
_	1	1		
	46	46		
	1 2	1		
	2	2		
	1	1		
	1 2 6	1 2 1 2 6		
	6	6		
-	-	-		
	7	7		
	7	7		
1	2	2		
	3	3		
	3	3		
•	159 (Max)	158 (Max)		

Ventilation Design – 12 Credits

Omit Composting - 7 Credits only

Public Transport Network & Covered Walkway – 2 Credits only

The maximum GreenRE score achievable for a project is capped at 100 credits and this does not include 15 bonus credits that are obtainable under Energy Related Requirements if a project uses renewable energy sources. The credit scored for renewable energy provision shall not result in a double grade jump in GreenRE rating (i.e from GreenRE Bronze or Silver to Gold or Platinum)


	GBI	GreenRE
a. Ownership	PAM + ACEM	REDHA
b. Development	Localised based on Climate, Resources and Priority	Partially localised based on the derivation from Green Mark
c. Administered	WorldGBC MalaysiaGBC	Advisory Panel
d. Registration Fee (Except Mega Project)	RM 5,000 – 45,000	RM 5,000 – 45,000 20% Discount for REHDA Members
e. Minimum Certification Score/Credit	RNC – 50% NRNC – 50%	RES (HR & Landed) – 43.48% (50/115 points) cap NRB (AC & non AC) – 41.67% (50/120 points) cap
f. Score/Credit from Passive Design (Arch)	RNC – 37% NRNC – 19%	RES (HR) – 37.10% (59/159 points) RES (Landed) – 39.24% (62/158 points) NRB (AC) – 31.94% (46/144 points) NRB (non AC) – 48.64% (71/146 points)
g. Score/Credit from Passive Design (Arch) & Connectivity	RNC – 49% NRNC – 19%	RES (HR) – 38.99% (62/159 points) RES (Landed) – 41.14% (65/158 points) NRB (AC) – 31.94% (46/144 points) NRB (non AC) – 48.64% (71/146 points)

Green Building Malaysian Expectation

Daylight

Solar PV

Daylight

Solar PV

Rainwater Harvesting

Daylight

Solar PV

Rainwater Harvesting

Recycle Bin

The Art of Designing

Score/Credit from Façade & Roof Design

RNC – 13% NRNC – 1%

VERSION 3.0 | JULY 2013

FIRST EDITION | APRIL 2009 | VERSION 1.0

GreenRE

RES (HR) – 9.43% (15/159 points) RES (Landed) – 13.92% (22/158 points) NRB (AC) - 10.42% (15/144 points) NRB (non AC) - 20.55% (30/146 points)

Residential Building & Landed Home Version 3.3 January 2024

Non-Residential Building Version 4.0 June 2023

High-Rise

Landed

14% 21%

AC

10%

Non AC

VERSION 3.0 | JULY 2013

13%

ART	CRITERIA	ASSESSMENT CRITERIA			
	EE	ENERGY EFFICIENCY			
	Design				
	EE1	Minimum EE Performance (Mandatory Compliance)			
	EE2	Advanced EE Performance			
1	EE3	Renewable Energy			
1	Energy Efficie	ncy			
	EE4	External Lighting and Control			
	EE5	Internet Connectivity			
	Maintenance				
	EE6	Sustainable Maintenance and Building User Manual (BUM)			
	EQ	INDOOR ENVIRONMENTAL QUALITY			
	Air Quality				
	EQ1	Minimum Indoor Air Quality Performance			
	EQ2	Volatile Organic Compounds Minimisation			
	EQ3	Formaldehyde Minimisation			
2	Lighting, Visua	al and Acoustic Comfort			
	EQ4	Daylighting			
	EQ5	External Views			
	EQ6	Sound Insulation			
	Evaluation				
	EQ7	Post Occupancy Evaluation			
	SM	SUSTAINABLE SITE PLANNING & MANAGEMENT			
	Site Planning				
	SM1	Site Selection & Planning			
	SM2	Re-habilitation of Brownfield Sites OR Re-development of Existing Buildings			
	SM3	Community Connectivity			
	Construction M	lanagement			
	SM4	Earthworks – Construction Activity Pollution Control			
	SM5	QLASSIC – Quality Assessment System For Building Construction Work			
_	SM6	Workers' Site Amenities			
3	SM7	IBS – Industrialised Building System			
	Transportation				
	SM8	Public Transportation Access			
	SM9	Dedicated Cycling Network			
	Design				
	SM10	Stormwater Design – Quantity and Quality Control			
	SM11	Heat Island Effect – Greenscape and Water Bodies			
	SM12	Heat Island Effect – Hardscape			
	SM13	Heat Island Effect – Roof			
	SM14	Composting			

1 1 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	POINTS	TOTA
12 5 23 21 21 22 22 3 3 22 11 3 3 22 11 12 3 12 3 12 3 12 3 12 3 3 12 3 3 12 3 3 3 1 1 1 3 3 3 3		
12 5 23 21 21 22 22 3 3 22 11 3 3 22 11 12 3 12 3 12 3 12 3 12 3 3 12 3 3 12 3 3 3 1 1 1 3 3 3 3		
23 2 2 1 2 2 2 2 2 2 3 2 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		
23 2 1 2 2 2 2 2 3 3 2 1 3 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		
2 1 2 2 2 2 3 2 1 3 2 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3	5	22
1 2 2 3 3 2 1 1 1 1 3 3 1 1 1 1 1 1 1 1	2	23
2 3 2 1 3 2 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		
12 3 1 1 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3		
12 33 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1	2	
12 33 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1		
12 33 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1		
12 33 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1	3	
12 3 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1		
3 1 1 1 1 1 1 1 1 1 1 1 1 1	I	12
1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 1 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	3	
1 1 1 1 1 1 4 1 1 1 1 1 3 2 3 3 5 2 1		
1 1 4 4 1 1 1 1 1 2 3 2 3 3 2 3 3 2 3 3 3 5 5 2 1	1	
1 1 4 4 1 1 1 1 1 2 3 2 3 3 2 3 3 2 3 3 3 5 5 2 1		
1 4 1 1 1 1 2 3 3 2 3 3 5 2 1	1	
1 4 1 1 1 1 2 3 3 2 3 3 5 2 1		
1 4 1 1 1 1 2 3 3 2 3 3 5 2 1	1	
4 1 1 1 2 3 2 3 2 3 2 1		
1 1 1 2 3 2 8 2 2 3 5 2 1	I	
1 1 2 33 33 33 31 3 1	4	
1 1 2 33 33 33 31 3 1	- 1	
1 2 33 8 2 2 3 5 2 1		
2 8 2 2 3 5 2 1	1	
2 8 2 3 5 2 1		33
2 3 5 2 1	2	
2 3 5 2 1		
3 5 2 1		
5 2 1	2	
5 2 1	3	
1	5	
1		
	1	

PART	CRITERIA	ASSESSMENT CRITERIA	POINTS	TOTAL	
	MR	MATERIALS & RESOURCES			
	Reused & Recycled Materials				
	MR1	Materials Reuse And Selection	2		
	MR2	Recycled Content Materials	2		
4	Sustainable Re	esources			
*	MR3	Regional Materials	2	12	
	MR4	Sustainable Timber	2		
	Waste Manag	ement			
	MR5	Storage and Collection of Recyclables	2		
	MR6	Construction Waste Management	2		
	WE	WATER EFFICIENCY			
	Water Harves	ting & Recycling			
	WE1	Rainwater Harvesting	4		
5	WE2	Waste Water Recycling	2	12	
	Increased Efficiency				
	WE3	Water Efficient Irrigation and Landscaping	2		
	WE4	Water Efficient Fittings	4		
6	IN	INNOVATION			
	IN1	Innovation in Design and Environmental Design Initiatives	7	8	
	IN2	Green Building Index Facilitator (GIBF)	1	<u> </u>	
		TOT	AL POINTS	100	

FIRST EDITION | APRIL 2009 | VERSION 1.0

1%

PART	CRITERIA	ITEM			
	EE	ENERGY EFFICIENCY			
	Design				
	EE1	Minimum EE Performance			
	EE2	Lighting Zoning			
	EE3	Electrical Sub-metering			
	EE4	Renewable Energy			
1	EE5	Advanced EE Performance - BEI			
	Commissioning	3			
	EE6	Enhanced Commissioning			
	EE7	Post Occupancy Commissioning			
	Verification &	Maintenance			
	EE8	EE Verification			
	EE9	Sustainable Maintenance			
	EQ	INDOOR ENVIRONMENTAL QUALITY			
	Air Quality				
	EQ1	Minimum IAQ Performance			
	EQ2	Environmental Tobacco Smoke (ETS) Control			
	EQ3	Carbon Dioxide Monitoring and Control			
	EQ4	Indoor Air Pollutants			
	EQ5	Mould Prevention			
	Thermal Comfort				
	EQ6	Thermal Comfort: Design & Controllability of Systems			
2	EQ7	Air Change Effectiveness			
-	Lighting, Visual & Acoustic Comfort				
	EQ8	Daylighting			
	EQ9	Daylight Glare Control			
	EQ10	Electric Lighting Levels			
	EQ11	High Frequency Ballasts			
	EQ12	External Views			
	EQ13	Internal Noise Levels			
	Verification				
	EQ14	IAQ Before & During Occupancy			
	EQ15	Post Occupancy Comfort Survey: Verification			

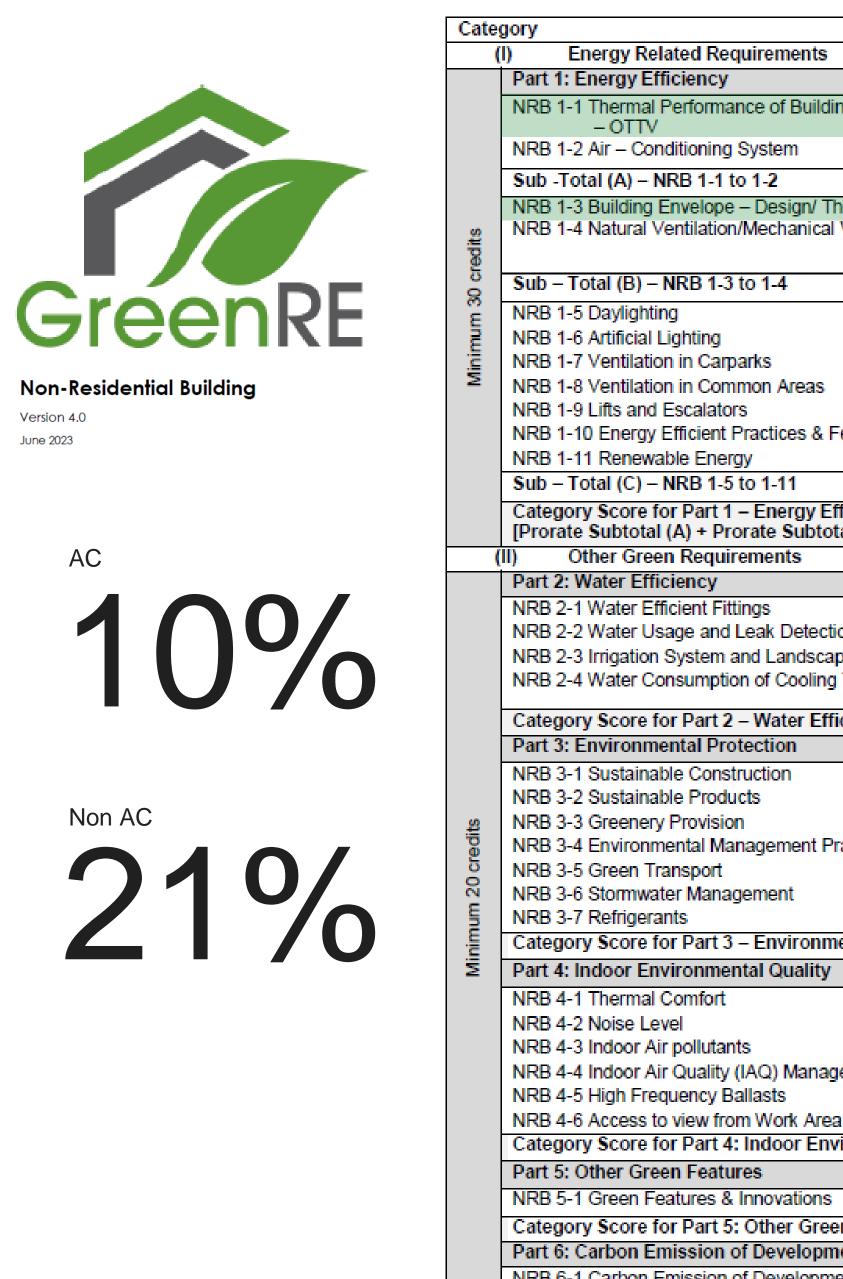
POINTS	TOTAL	PART	CRITERIA	ITEM	POINTS	TOTAL
			SM	SUSTAINABLE SITE PLANNING & MANAGEMENT		
			Site Planning			
1			SM1	Site Selection	1	
3			SM2	Brownfield Redevelopment	1	
1			SM3	Development Density & Community Connectivity	2	
5			SM4	Environment Management	2	
15	35		Construction	Management	·	
	35		SM5	Earthworks - Construction Activity Pollution Control	1	
3		_	SM6	QLASSIC	1	
2		3	SM7	Workers' Site Amenities	1	16
			Transportatio	n n		
2			SM8	Public Transportation Access	1	
 3			SM9	Green Vehicle Priority	1	
			SM10	Parking Capacity	1	
			Design		<u> </u>	
1			SM11	Stormwater Design – Quantity & Quality Control	1	
1			SM12	Greenery & Roof	2	
1			SM13	Building User Manual	1	
 2			MR	MATERIALS & RESOURCES		
1			Reused & Re	cycled Materials		
1			MR1	Materials reuse and selection	2	
2			MR2	Recycled content materials	2	
 1			Sustainable R			
1	21	_	MR3	Regional Materials	1	
 2		4	MR4	Sustainable Timber	1	11
 1			Waste Manag	gement		
1			MR5	Storage & Collection of recyclables	1	
 1			MR6	Construction waste management	2	
 2			Green Produ	-		
 1			MR7	Refrigerants & Clean Agents	2	
1			WE	WATER EFFICIENCY		
2				sting & Recycling		
 2			WE1	Rainwater Harvesting	2	
 1			WE2	Water Recycling	2	
		5	Increased Eff		I	10
			WE3	Water Efficient - Irrigation/Landscaping	2	
			WE4	Water Efficient Fittings	2	
			WE5	Metering & Leak Detection System	2	
			IN	INNOVATION		
		6	IN1	Innovation in Design & Environmental Design Initiatives	6	
			IN2	Green Building Index Accredited Facilitator	1	7
					OTAL POINTS	100

Residential Building & Landed Home Version 3.3

January 2024

High-Rise

9%


Landed

14%

	Category
(I)	Energy Related Requirements
	Part 1: Energy Efficiency
	RES 1-1 Thermal Performance of Building Envelope -RETV
Minimum 30 credits	RES 1-2 Naturally Ventilated Design and Energy Efficient Cooling RES 1-3 Daylighting
cre	RES 1-4 Artificial Lighting
8	RES 1-5 Ventilation in Carparks
ε	RES 1-6 Domestic Hot Water System
E	RES 1-7 Lifts
Ē	RES 1-8 Cool Hardscaped Areas
2	RES 1-9 Energy Efficient Features RES 1-10 Renewable Energy
-	Category Score for Part 1 – Energy Efficiency
(11)	Other Green Requirements
(")	Part 2: Water Efficiency
-	RES 2-1 Water Efficient Fittings
	RES 2-2 Water Usage Monitoring
	RES 2-3 Irrigation System and Landscaping
	Category Score for Part 2 – Water Efficiency
	Part 3: Environmental Protection
	RES 3-1 Sustainable Construction
	RES 3-2 Sustainable Products
its	RES 3-3 Greenery Provision
Del	RES 3-4 Environmental Management Practice RES 3-5 Green Transport
00	RES 3-6 Stormwater Management
0 2	RES 3-7 Internet Connectivity
unu	RES 3-8 Community Connectivity
Minimum 20 credits	Category Score for Part 3 – Environmental Protection
2	Part 4: Indoor Environmental Quality
	RES 4-1 Noise Level
	RES 4-2 Indoor Air Pollutants RES 4-3 Waste Disposal
	RES 4-4 Indoor Air Quality in Wet Areas
	Category Score for Part 4 – Environmental Quality
ľ	Part 5: Other Green Features
ľ	RES 5-1 Green Features & Innovations
	Category Score for Part 5 – Other Green Features
	Part 6: Carbon Emission of Development
	RES 6-1 Carbon Emission of Development
	Category Score for Part 6 – Carbon Emission of Development
	GreenRE Score:

Credits A	locations
High- Rise	Landed
15	22
22 6	22 6
8	4
6	4
3	3
1	1 2
7	7
15	15
85 (Max)	84 (Max)
8	8 1
3	3
12	12
10	10
8	8
8 10	8 10
5	5
3	3
1	1 1
46	46
1 2	1
2	2
1 2 6	1 2 6
6	6
7	7
7	7
3	3
3	3
: 159 (Max)	158 (Max)

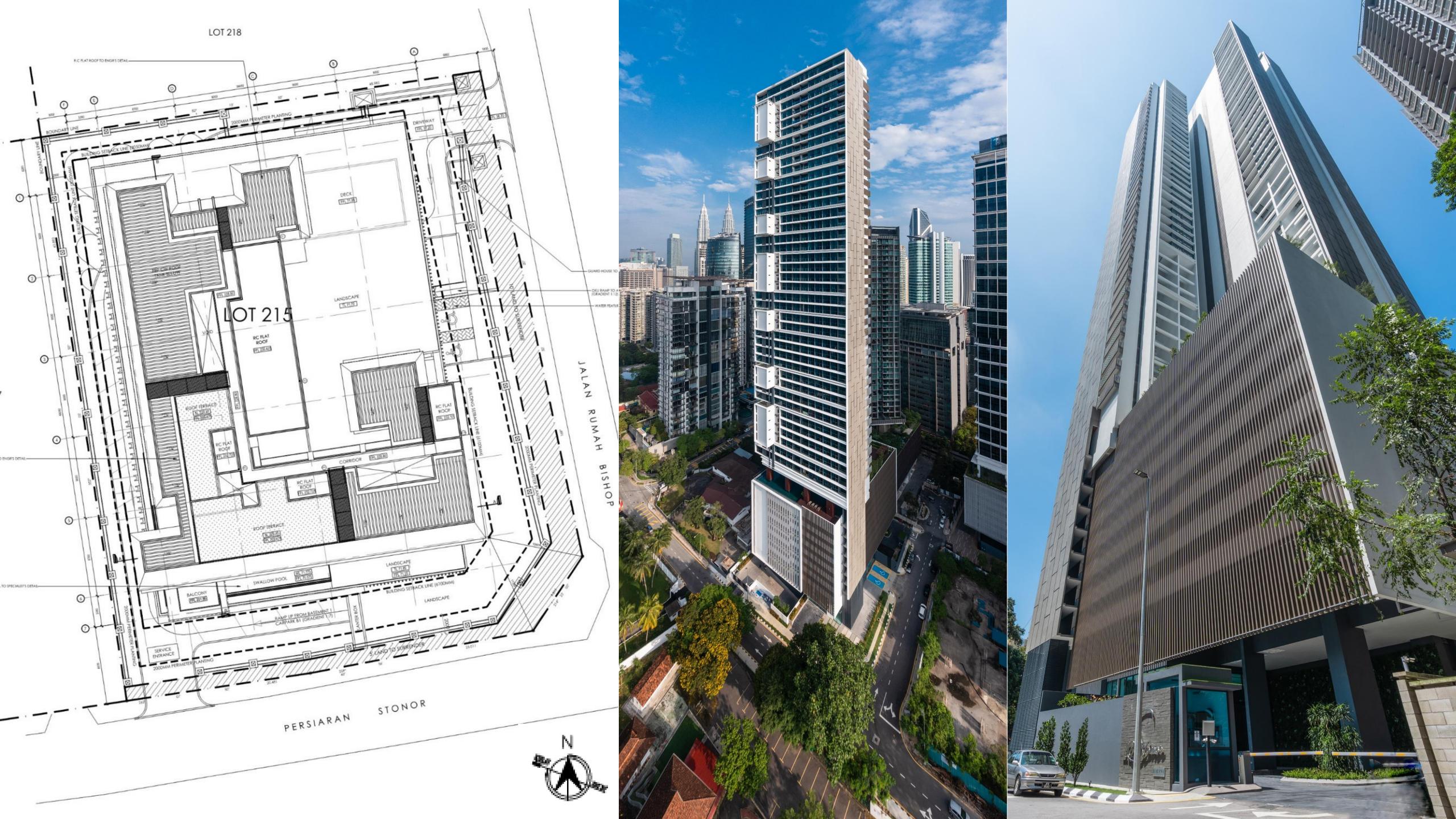
The maximum GreenRE score achievable for a project is capped at 100 credits and this does not include 15 bonus credits that are obtainable under Energy Related Requirements if a project uses renewable energy sources. The credit scored for renewable energy provision shall not result in a double grade jump in GreenRE rating (i.e from GreenRE Bronze or Silver to Gold or Platinum)

jory	
) Energy Related Requirements	
Part 1: Energy Efficiency	
NRB 1-1 Thermal Performance of Building Envelope – OTTV	Section (A) Applicable to a
NRB 1-2 Air – Conditioning System	cond. areas
Sub -Total (A) – NRB 1-1 to 1-2	
NRB 1-3 Building Envelope – Design/ Thermal Parameters	Section (B)
NRB 1-4 Natural Ventilation/Mechanical Ventilation	Applicable to r
	air- cond. area
Sub – Total (B) – NRB 1-3 to 1-4	
NRB 1-5 Daylighting	Section(C)
NRB 1-6 Artificial Lighting	Applicable to a
NRB 1-7 Ventilation in Carparks	areas
NRB 1-8 Ventilation in Common Areas	
NRB 1-9 Lifts and Escalators	
NRB 1-10 Energy Efficient Practices & Features	
NRB 1-11 Renewable Energy	
Sub – Total (C) – NRB 1-5 to 1-11	
Category Score for Part 1 – Energy Efficiency [Prorate Subtotal (A) + Prorate Subtotal (B)] + Subtotal	(C)
I) Other Green Requirements	
Part 2: Water Efficiency	
NRB 2-1 Water Efficient Fittings	
NRB 2-2 Water Usage and Leak Detection	
NRB 2-3 Irrigation System and Landscaping	
NRB 2-4 Water Consumption of Cooling Tower	
Category Score for Part 2 – Water Efficiency	
Part 3: Environmental Protection	
NRB 3-1 Sustainable Construction	
NRB 3-2 Sustainable Products	
NRB 3-3 Greenery Provision	
NRB 3-4 Environmental Management Practice	
NRB 3-5 Green Transport	
NRB 3-6 Stormwater Management	
NRB 3-7 Refrigerants Category Score for Part 3 – Environmental Protection	
Part 4: Indoor Environmental Quality	
NRB 4-1 Thermal Comfort	
NRB 4-1 Thermai Comon NRB 4-2 Noise Level	
NRB 4-2 Noise Level NRB 4-3 Indoor Air pollutants	
NRB 4-4 Indoor Air Quality (IAQ) Management	
NRB 4-5 High Frequency Ballasts	
NRB 4-6 Access to view from Work Area	
Category Score for Part 4: Indoor Environmental Qualit	v
Part 5: Other Green Features	
NRB 5-1 Green Features & Innovations	
Category Score for Part 5: Other Green Features	
Part 6: Carbon Emission of Development	
NRB 6-1 Carbon Emission of Development	
Category Score for Part 6: Carbon Emission of Develop	oment
sategory coord for rait of carbon Emission of Develop.	CONTRACTOR STATE
Category Score for Dart 2 to Dart 6 - Other Groop Pegu	iromonte
Category Score for Part 2 to Part 6 – Other Green Requ GreenRE Non-Residential Building Score	

	Credits Allocation
	ł
	15
to air-	
5	33
	48
	30
to non	
reas	20
	50
	6
to all	12
	4
	5
	2
	12
	20
	61
	111 (MAX)
	8
	2
	3
	3 2
	15
	10
	10
	10
	8 10
	6
	3
	2
	49
	2
	1 2
	2
	1
	1
	9
	7
	7
	3
	3
-	83
-	194 (MAX)
	is i finový

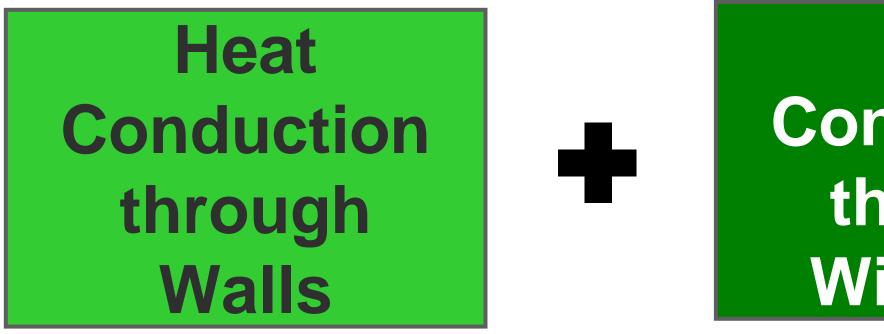
The maximum GreenRE score achievable for a project is capped at 100 credits and this does not include 20 bonus credits that are obtainable under Energy Related Requirements if a project uses renewable energy sources. The credit scored for renewable energy provision shall not result in a double grade jump in GreenRE rating (i.e from GreenRE Bronze or Silver to Gold or Platinum)

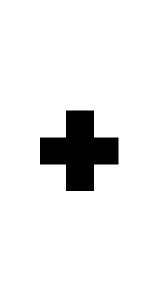

+ gesture of **welcome**


+ interlocking

+ cantilevered

Case Study


ΟΤΤΟ

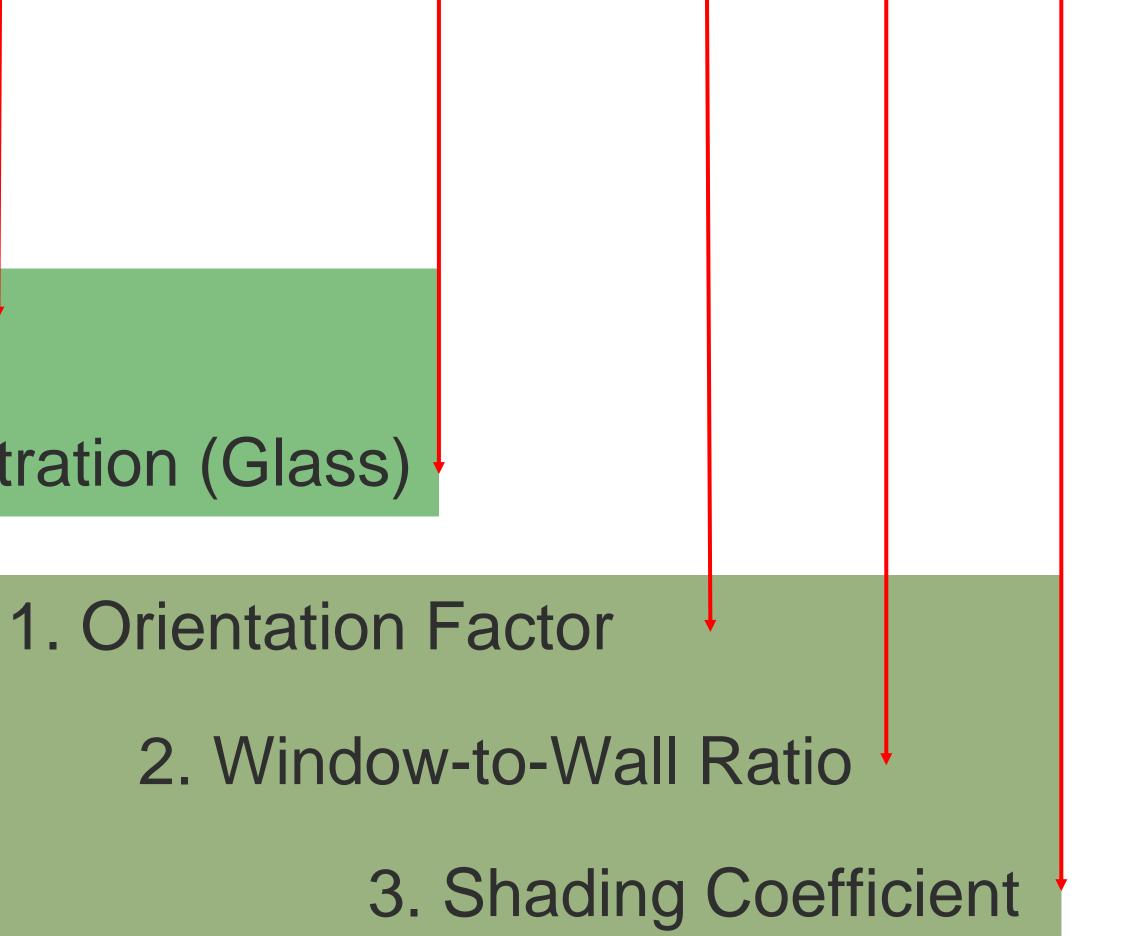


The lower the OTTV, the better.

 $OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

Heat Conduction through Windows

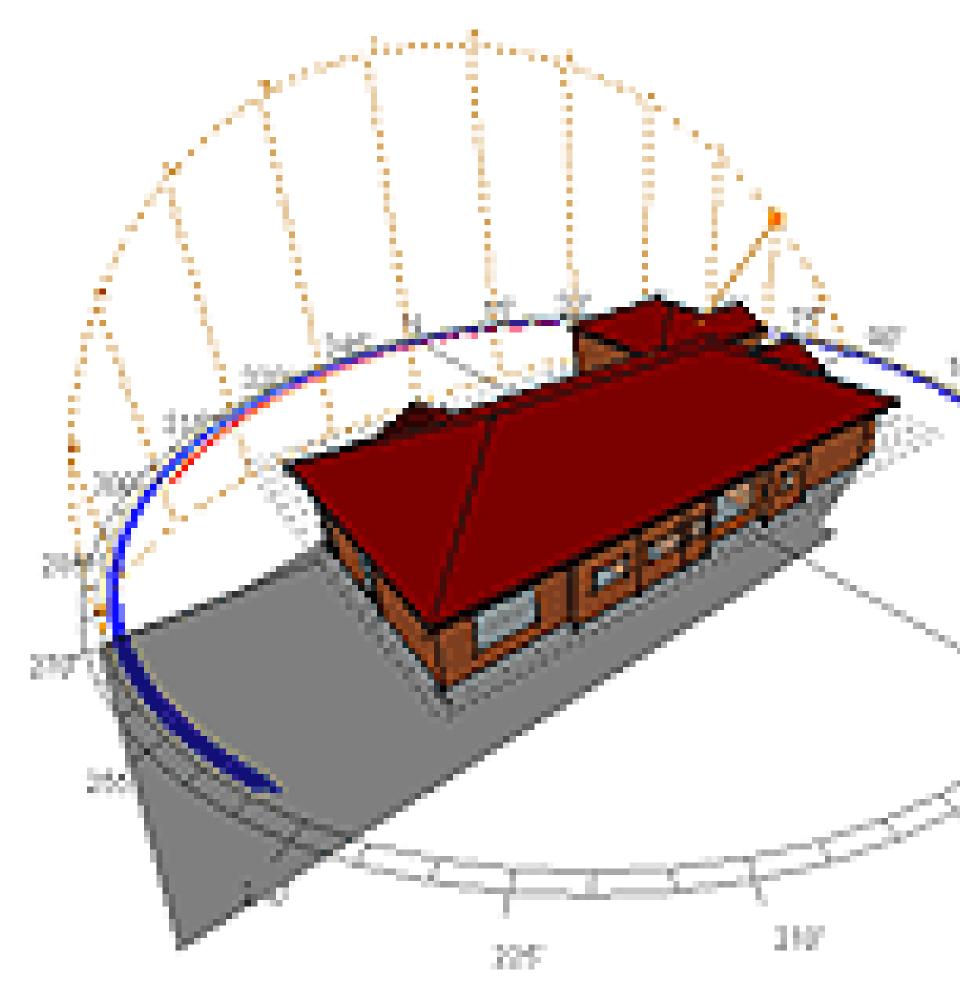
Solar Heat Gain through Windows

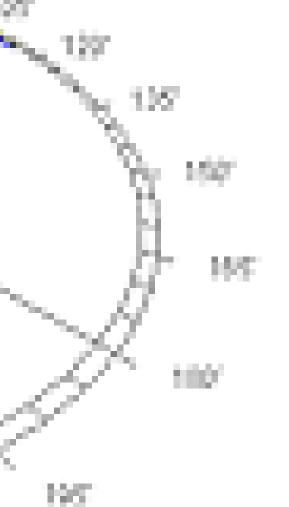


$OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

6. Solar Absorptivity of Wall (Color)

5. U-value of Wall


4. U-value of Fenestration (Glass)



$OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

1. Orientation Factor

Orientation	OF
North	0.90
Northeast	1.09
East	1.23
Southeast	1.13
South	0.92
Southwest	0.90
West	0.94
Northwest	0.90
NOTES:	

- Table 5 specifies OF for the various orientation of the fenestration. For the calculation of OF, it is 1. recommended that the nearest predominant orientation be selected.
- A fenestration system may consist of a glazing material such as glass, a shading device and a combination 2. of both.

Α

B

Orientation	OF
North	0.90
Northeast	1.09
East	1.23 B
Southeast	1.13
South	0.92
Southwest	0.90
West	0.94
Northwest	0.90

NOTES:

- 1. Table 5 specifies OF for the various orientation of the fenestration. For the calculation of OF, it is recommended that the nearest predominant orientation be selected.
- 2. A fenestration system may consist of a glazing material such as glass, a shading device and a combination of both.

A B
28°

Orientation	OF	
North	0.90	
Northeast	1.09	
East	1.23	
Southeast	1.13	>22.5 deg)
South	0.92	
Southwest	0.90	
West	0.94	
Northwest	0.90	

NOTES:

- 1. Table 5 specifies OF for the various orientation of the fenestration. For the calculation of OF, it is recommended that the nearest predominant orientation be selected.
- 2. A fenestration system may consist of a glazing material such as glass, a shading device and a combination of both.

A B
22° C

Orientation	OF	
North	0.90	
Northeast	1.09	
East	1.23	
Southeast	1.13	
South	0.92	(<22.5 deg)
Southwest	0.90	
West	0.94	
Northwest	0.90	
NOTEO		

NOTES:

- 1. Table 5 specifies OF for the various orientation of the fenestration. For the calculation of OF, it is recommended that the nearest predominant orientation be selected.
- 2. A fenestration system may consist of a glazing material such as glass, a shading device and a combination of both.

Le Mirch

rental shop

chicken chop station

Nobu Kuala Lumpur 😭 👔

as Twin Towers

Asy-Syakirin Masjid KLCC Sushi Azabu

Envi Skydin

Mandarinriental, 😜 Kualaŭmpur 💙

WIPn The Park

KLCC Park

Aquarta KLCC

Menara Felda -Platinum Park KLCC...

Persiaran KLCC

ACTED RATE

Sabayon at EQ.

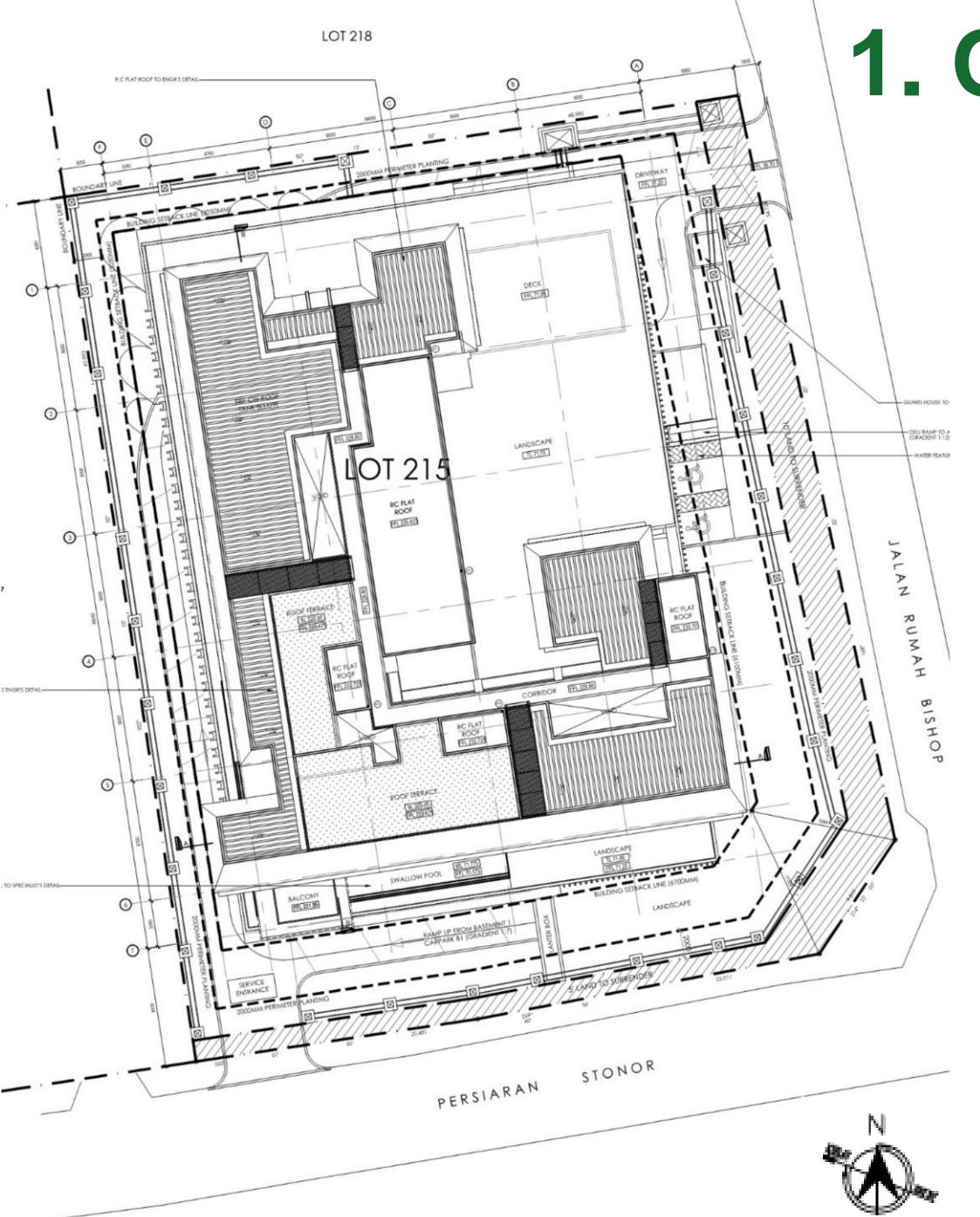
Sushi Oribe 2

Kia Peng

aradize Poolside

489

IN.


Jalan Conlay TUMI Essentially

Horizon Grill

Royale Chulan Kuala Lumpur

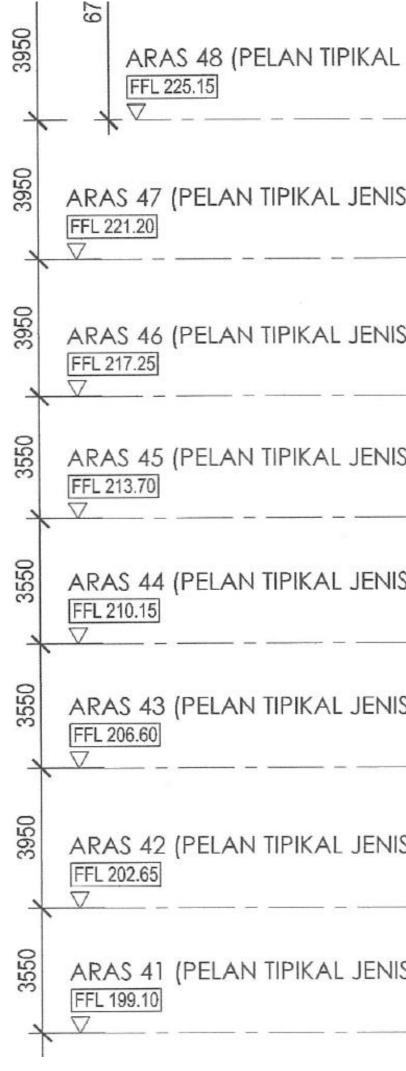
Orientation	OF
North	0.90
Northeast	1.09
East	1.23
Southeast	1.13
South	0.92
Southwest	0.90
West	0.94
Northwest	0.90
NOTES:	

- Table 5 specifies OF for the various orientation of the fenestration. For the calculation of OF, it is 1. recommended that the nearest predominant orientation be selected.
- A fenestration system may consist of a glazing material such as glass, a shading device and a combination 2. of both.

						Materia	als	Uvglazing	Scglazing				Wal	II Specificat	ion			
10 Stonor							Glazing Spe		- grazing			Ma	aterials			Uv	(α)	
				Glass-01		6 + 1.14 + 6 da		4.90	0.59		110mm Thk. Bri			ick plaste	r on both	2.66	(~)	
													side	0		2.00		
		1		Glass-02		6 + 0.38 + 6 da		5.36	0.52	-		Colour of W	alis - Light	Grey			0.4	
ΟΤΤΟ	44.65	w/m2K		Glass-03	b	oreezeway 6 t	empered	6.20	0.74	-								
				Glass-04	6+(0.38 + 6 arctic	blue low-e	3.76	0.41									
Total Façade Area (m2)	340	001.73		Glass-05	6 arc	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	108	883.02		Glass-06	6	6 dark blue te	empered	5.20	0.66									
WWR	().32																
						ΟΤΤΟ	CALCULATION _S	TONOR										
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	ΟΤΤΛ
Orientation : South																		
Level : Ground Floor	1	1								1			1	1	1			
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	30
SOUTH_Ground Floor (6 + $1.14 + 6$ dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	34
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	20
Level : 8th Floor		1												1			1 1	
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	35
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	38
Level : 9th Floor																	· ·	
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	98
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	3.76	194.00	0.92	0.41	1.00	1.00	0.41	80.10	46
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	3.76	194.00	0.92	0.41	0.78	1.00	0.32	66.14	23
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	3.85	194.00	0.92	0.41	1.00	1.00	0.41	56.30	25
Level : 10th & 16th Floor		ł											1	1			1 1	
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	21
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	3.76	194.00	0.92	0.41	1.00	1.00	0.41	73.60	95
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	3.76	194.00	0.92	0.41	0.79	1.00	0.33	61.84	49

1. Orientation OTTV = 44.65 W/m² (CVA)

TV x AREA	
3061.93	
3400.82	
2036.50	
3573.52	
3821.88	
985.85	
4657.80	
2371.46	
2537.06	
2193.86	
9524.75	
4934.05	
	_


$OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

1. Orientation Factor

2. Window-to-Wall Ratio

2. Window-to-Wall (WWR) Ratio

	L		
AL JENIS A8)		<i>N N</i>	* * *
NIS A5)		AW 05	AW OT 02
NIS B7)			AW AW 01 02
NIS B7)			
NIS B7)			
NIS B6)			AW AW 02
NIS A6)	AW C ^M C		
NIS A5)	AW OT	AW 05	AW 01 02
			1

						Matari	-1-	114	6.			1	18/-1	I Constituent			1	
10 Stonor						Materi		Uv _{glazing}	Scglazing					l Specificati	ion	Uv		
							Glazing Spe	cification			110 mm This Da		aterials		- h - th	Wall	(α)	
				Glass-01		6 + 1.14 + 6 d	ark blue	4.90	0.59		110mm Thk. Bri		th 20mm thi side	ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 d	ark blue	5.36	0.52			Colour of W	alls - Light	Grey			0.4	
ΟΤΤΟ	51.30	w/m2K		Glass-03	t	oreezeway 6 1	tempered	6.20	0.74									
		-		Glass-04	6+	0.38 + 6 arctio	blue low-e	3.76	0.41									
Total Façade Area (m2)	340	01.73		Glass-05	6 ar	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	108	83.02		Glass-06		6 dark blue t	empered	5.20	0.66									
WWR	0	.32																
													•					
	1			1		οττν	CALCULATION _	STONOR		,					,		, , , , , , , , , , , , , , , , , , ,	
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	OTTV x AREA
Orientation : South																		
Level : Ground Floor	1											1	1	1	1 1		I I	
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3061.93
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor ($6 + 0.38 + 6$ dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor																		
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor												•	1	•				
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	1.00	1.00	0.52	103.60	6024.49
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.78	1.00	0.40	85.79	3075.90
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	1.00	1.00	0.52	70.71	3186.47
Level : 10th & 16th Floor	•	I													· · · · ·		I I	
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	1.00	1.00	0.52	94.73	12258.14
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	5.36	194.00	0.92	0.52	0.79	1.00	0.41	79.70	6359.61
	400.00	45.07	55.00	45.00	A 40	0.55	2.55	C 00	0.45	5.05	404.00	0.00	0.50	4.00	4.00	0.50	65.45	6505.00

2. Window-to-Wall (WWR) Ratio **OTTV = 51.30 W/m² (Non Low-E)**

2. Window-to-Wall (WWR) Ratio **OTTV = 44.56 W/m² (Non Low-E + WWR15% Reduction)**

10 Stonor						Materia	ls	Uv _{glazing}	Scglazing				Wal	II Specificati	on			
							Glazing Spe	cification				Ma	aterials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 da	ark blue	4.90	0.59		110mm Thk. Bri		th 20mm th side	ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 da	ark blue	5.36	0.52		(Colour of W		Grey			0.4	
ΟΤΤV	44 56	w/m2K		Glass-03	t	oreezeway 6 t	empered	6.20	0.74									
	44.30	W/IIIZIX		Glass-04		0.38 + 6 arctic		3.76	0.41									
Total Façade Area (m2)	340	001.73		Glass-05	6 ar	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	92	63.14		Glass-06		6 dark blue te	empered	5.20	0.66									
WWR		0.27	R15%															
								TONOS										
OTTV CALCULATION_STONOR																		
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uv _{glazing}	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{screen}	SC	ΟΤΤΥ	OTTV x AREA
Orientation : South																		
Level : Ground Floor	404.05	0.00	401.05	45.00	0.40	1.00	2.55	C 00	0.00								45.05	2051.02
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00		-						15.96	3061.93
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor	-1	1			1	1 1							1	1			1 1	
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor																		
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	37.40	24.49	15.00	0.40	0.36	2.66	6.00	0.64	3.76	194.00	0.92	0.52	1.00	1.00	0.52	79.90	4646.15
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	22.66	15.46	15.00	0.40	0.37	2.66	6.00	0.63	3.76	194.00	0.92	0.52	0.78	1.00	0.40	65.76	2357.67
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	18.11	26.96	15.00	0.40	0.60	2.66	6.00	0.40	3.85	194.00	0.92	0.52	1.00	1.00	0.52	56.12	2528.98
Level : 10th & 16th Floor					1										I I			
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	74.80	54.60	15.00	0.40	0.42	2.66	6.00	0.58	3.76	194.00	0.92	0.52	1.00	1.00	0.52	73.42	9501.46
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	45.31	34.48	15.00	0.40	0.43	2.66	6.00	0.57	3.76	194.00	0.92	0.52	0.79	1.00	0.41	61.50	4907.38
<u> </u>	-					I I				+ +					I		I I	

 $OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

1. Orientation Factor

- 2. Window-to-Wall Ratio
 - a. What is the effective WWR?
 - b. Can WWR >1 or <0 ?

$OTTV = 15\alpha(1-WWR)Uw + 6(WWR)Uf + 194(OFxWWRxSC)$

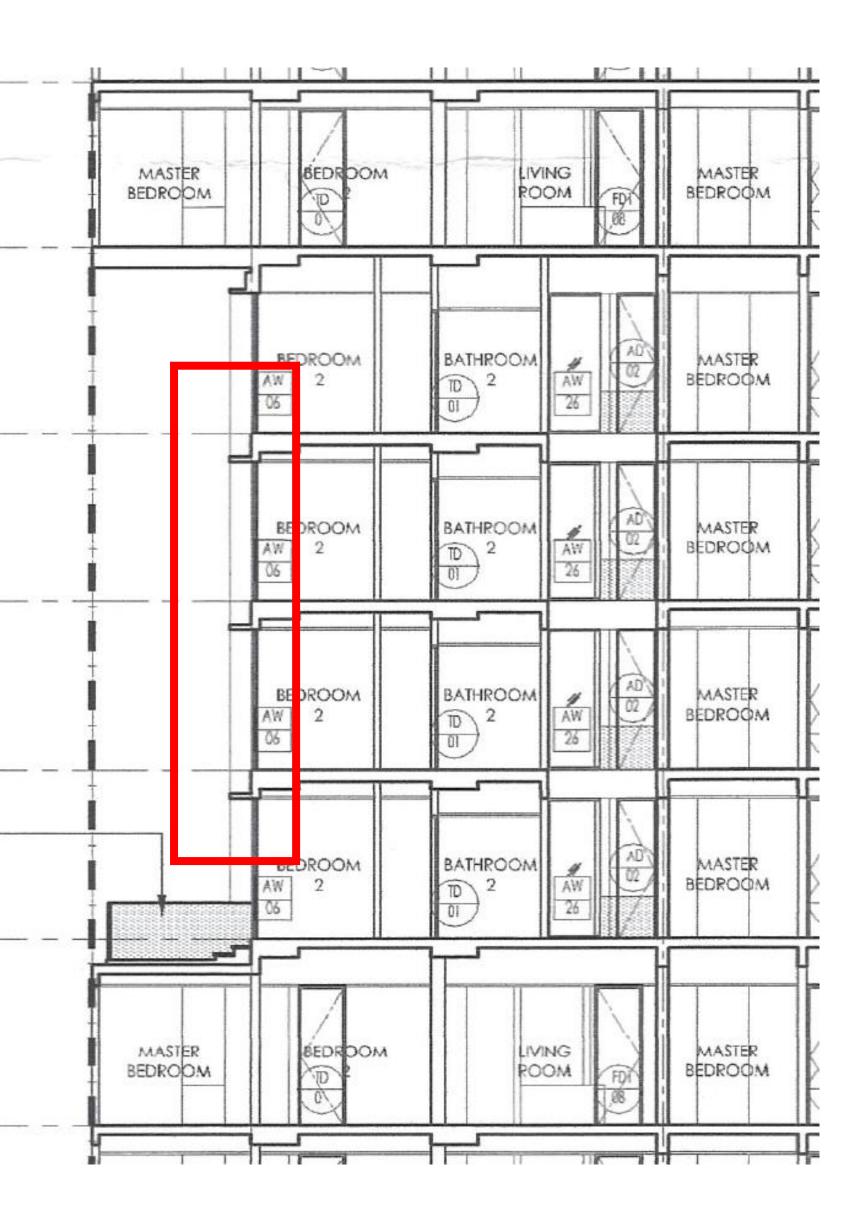
1. Orientation Factor

2. Window-to-Wall Ratio

- 3. Shading Coefficient
 - $SC = SC1 \times SC2 \times SC3$
 - SC1: Glass Shading Property
 - SC2: Shading Devices (Horizontal and/or Vertical)

SC3: Sunscreen

Note: SC value is the ratio of solar heat gain (radiation) through a glass unit to the solar energy which passes through 3mm Clear Float Glass

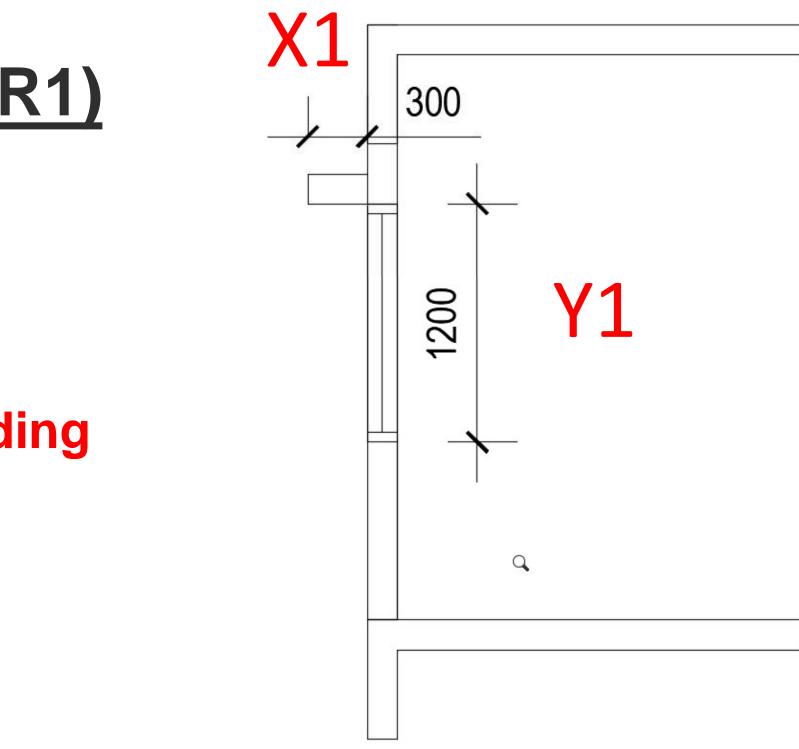

No	Glass	Thk	: (mm)	VLT	U-Value	SC-Value	OTTV (W/m²)
Base	Light Clear Tempered Float with Heat Soaked	10.00		87.00%	5.70	0.90	102.84
а	Light Green Tempered Float with Heat Soaked	10.00		70.00%	5.10	0.59	72.80
b	Light Green Annealed Float + Clear PVB + Clear Annealed Float	10.38	5.00 + 0.38 + 5.00	78.00%	5.10	0.69	81.79
с	Light Green Annealed Float + Clear PVB + Clear Annealed Hard Coated Low-E#4	10.38	5.00 + 0.38 + 5.00	71.00%	2.90	0.57	63.08
d	No Information						
е	Light Green Heat Strenghthened Float + Clear PVB + Clear Heat Strenghthened Hard Coated Low-E#4	13.52	6.00 + 1.52 + 6.00	68.00%	2.80	0.52	58.22
f	(Clear Heat Strenghthened Float + Clear PVB + SV 40T Clear Heat Strenghthened Soft Coated Low-E#4) + A12 + Clear Heat Strenghened Float	31.52	6.00 + 1.52 + 6.00 + 12.00 (air) + 6.00	39.00%	1.50	0.24	28.36
g	(Clear Heat Strenghthened Float + Clear PVB + SV 52T Clear Heat Strenghthened Soft Coated Low-E#4) + A12 + Clear Heat Strenghened Float	31.52	6.00 + 1.52 + 6.00 + 12.00 (air) + 6.00	48.00%	1.50	0.30	33.75
h	Solar Control Silver Grey Tempered with Heat Soaked Soft Coated Reflective V1#2	6.00		19.00%	4.30	0.35	48.33
i	Solar Control Silver Green Tempered with Heat Soaked Soft Coated Reflective V2#2	6.00		13.00%	4.00	0.27	40.05
j	Solar Control Silver Grey Annealed Soft Coasted V1#2 + Clear PVB + Clear Heat Annealed Hard Coasted Low-E#4	10.38	5.00 + 0.38 + 5.00	20.00%	2.80	0.28	36.63

3. Shading Coefficient (SC) SC1: Glass Shading Property

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

Horizontal Projection (R1)

R1 = X1 / Y1= 300 / 1200= 0.25

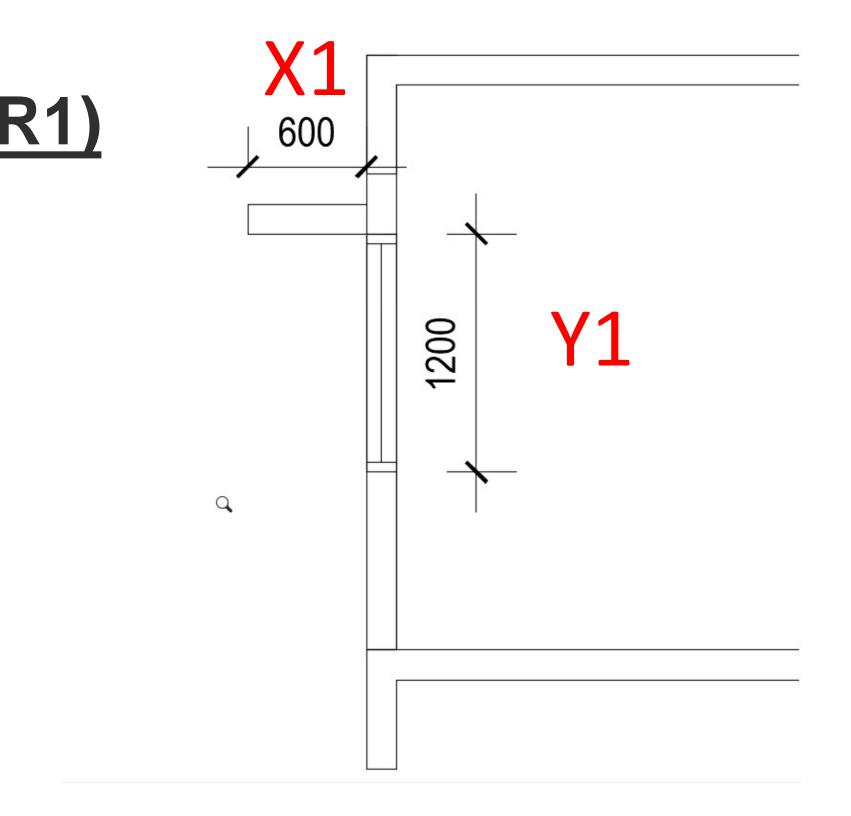

Not consider Horizontal Shading because R1 < 0.3

Therefore SC2 = 1

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0 79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

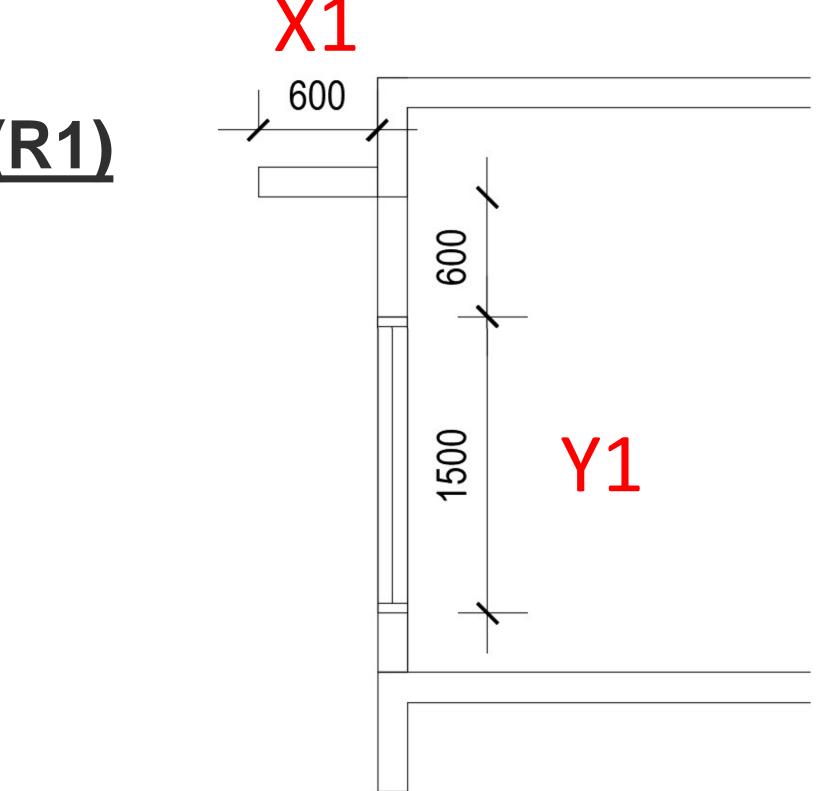

Horizontal Projection (R1)

R1 = X1 / Y1= 600 / 1200= 0.5

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

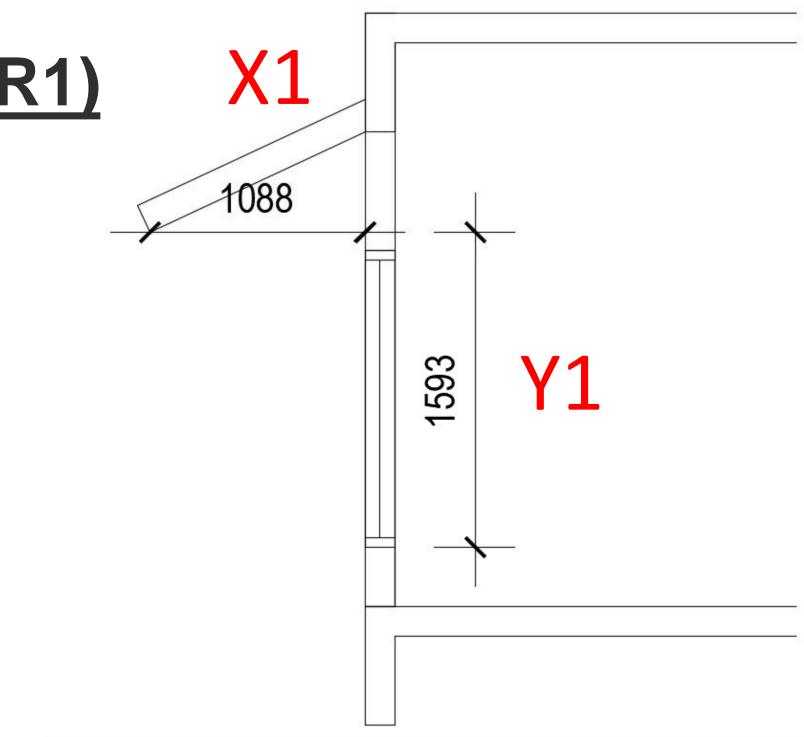

Horizontal Projection (R1)

R1 = X1 / Y1= 300 / 2100= 0.28

Therefore SC2 = 1

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients



Horizontal Projection (R1)

R1 = X1 / Y1= 10880 / 1593 = 0.68

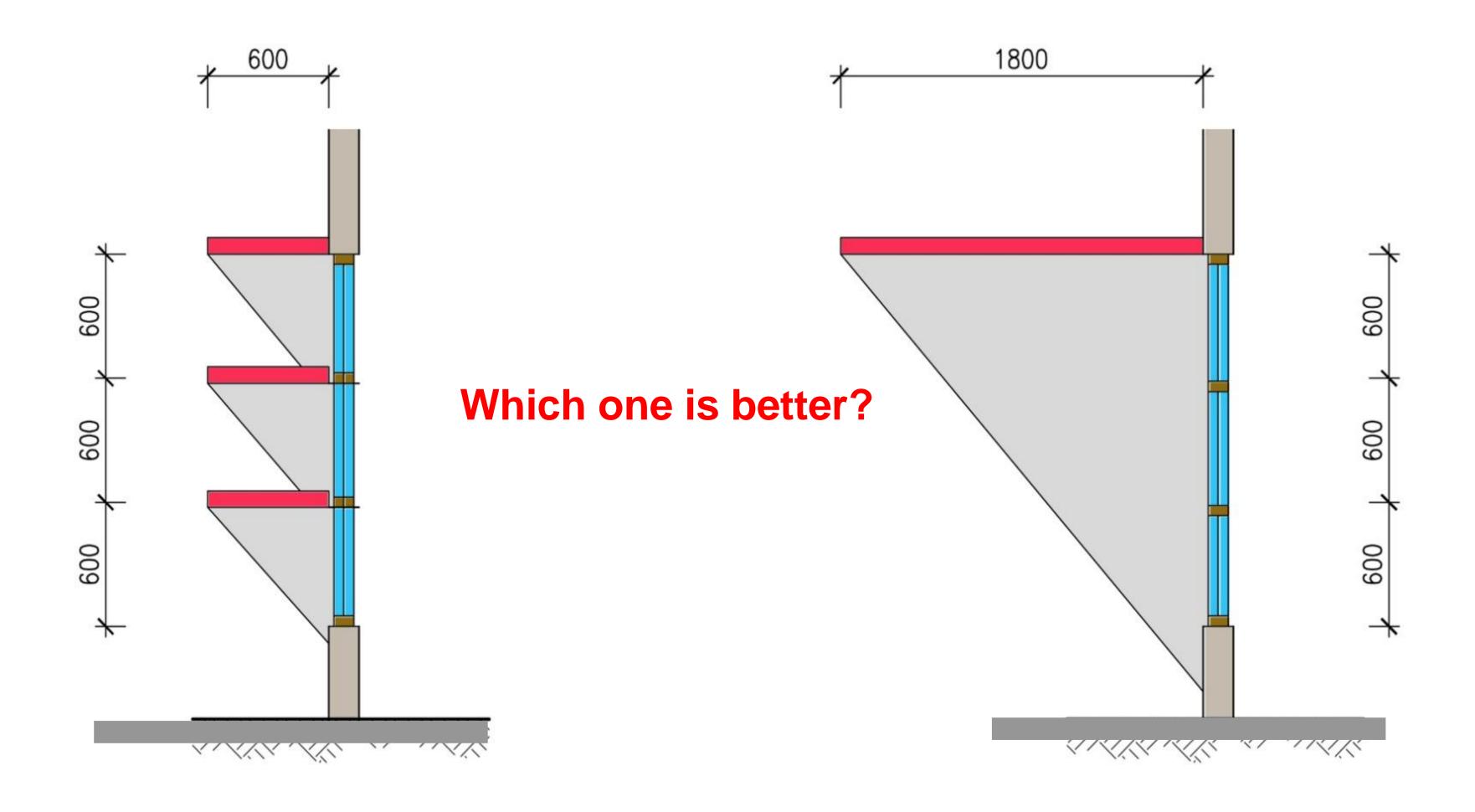
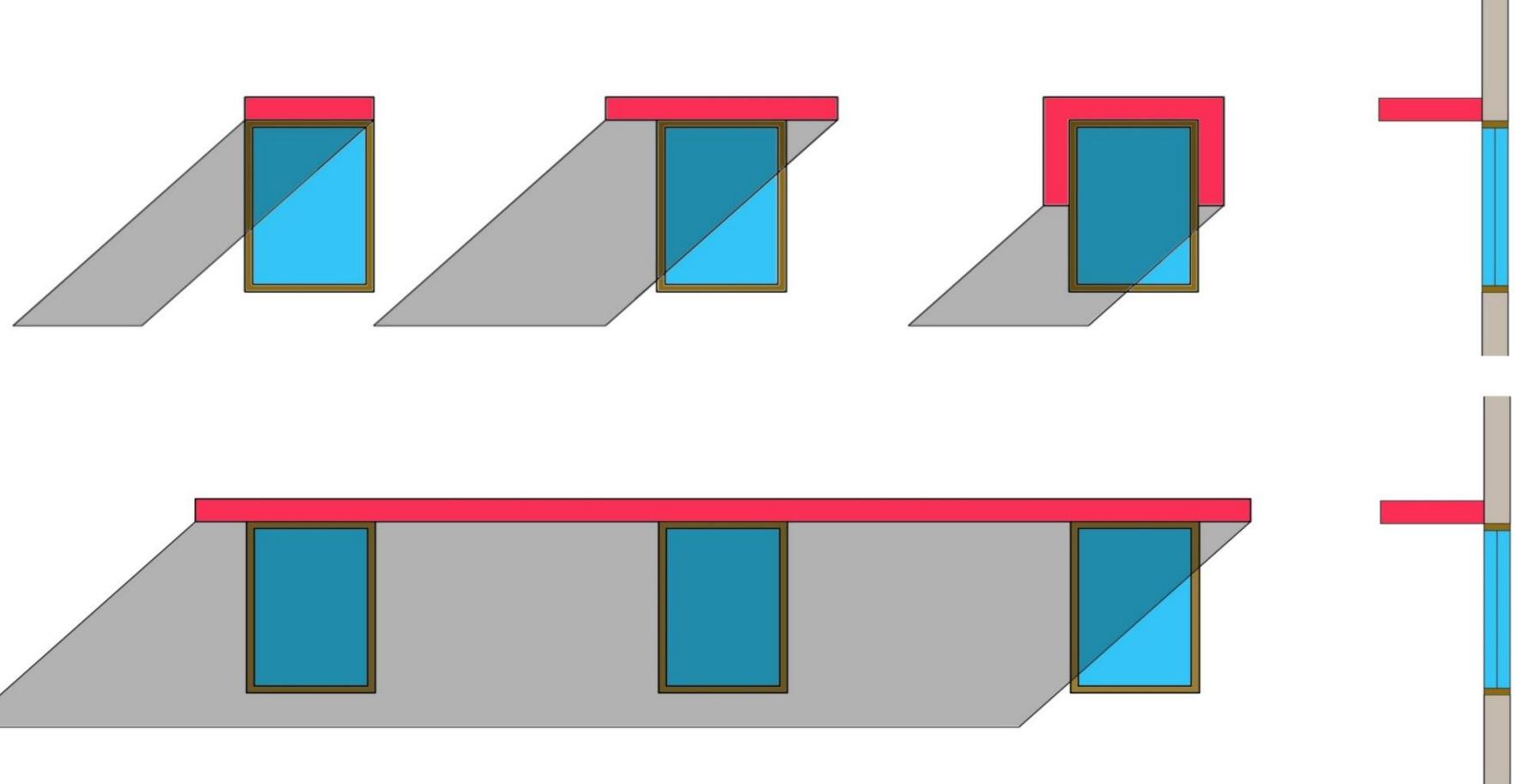
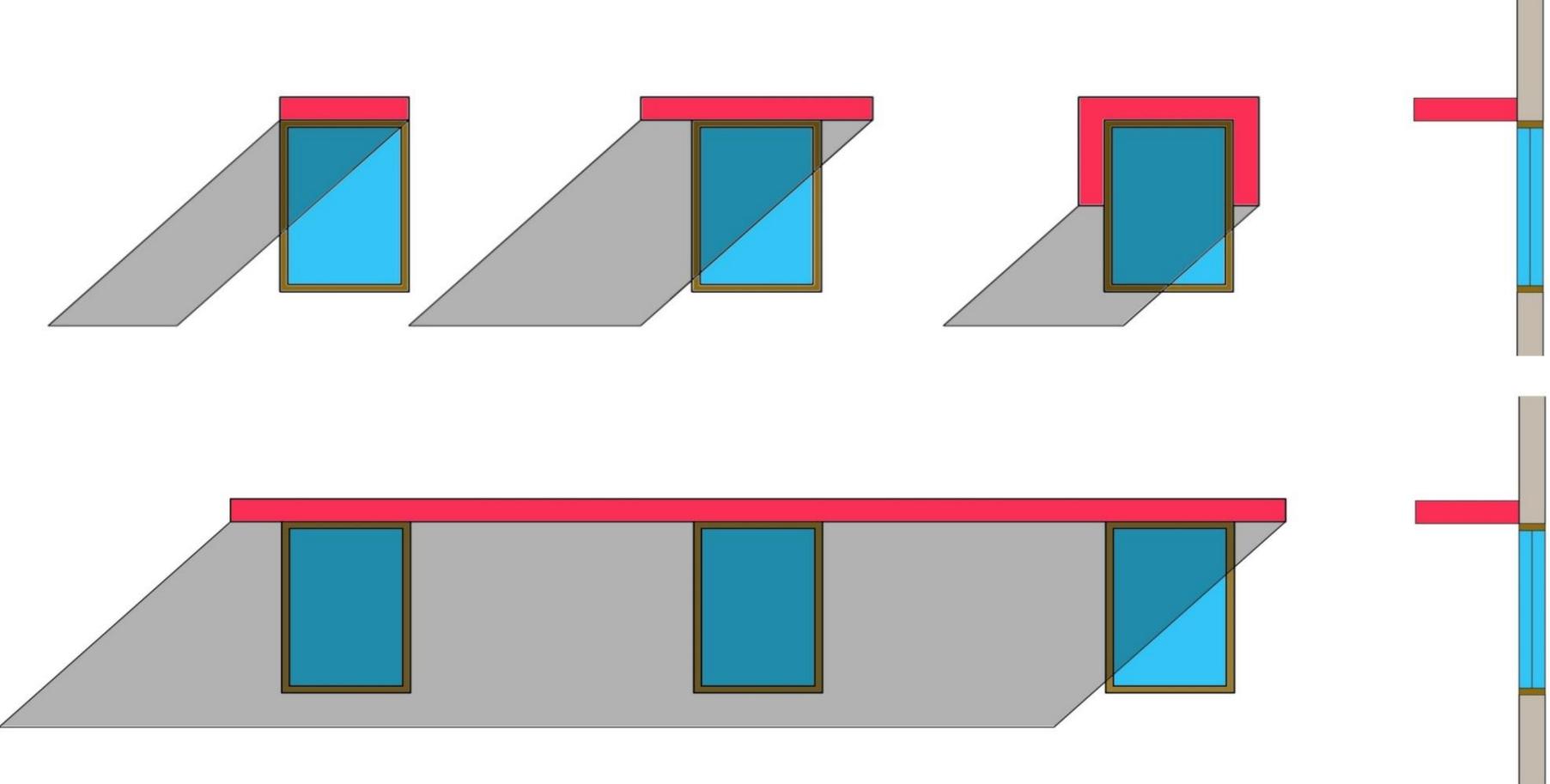
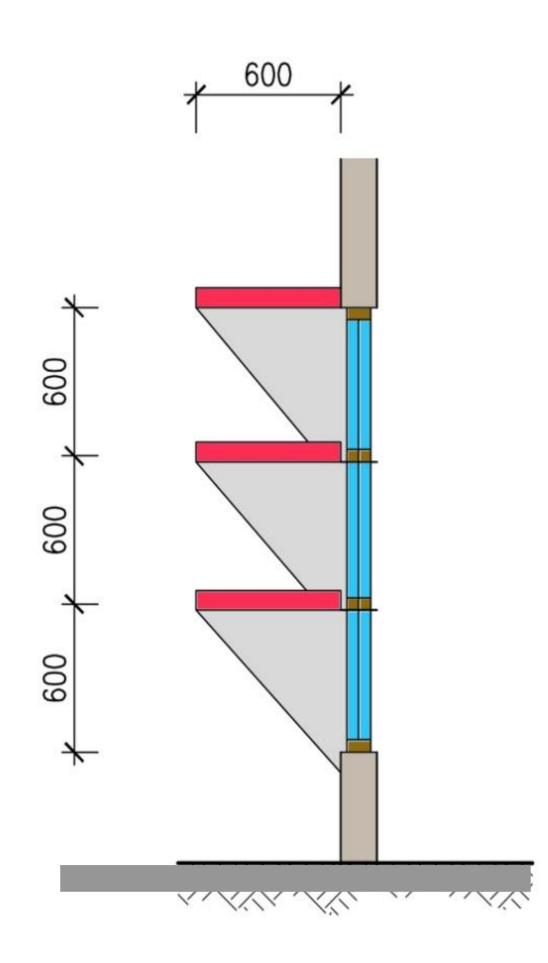
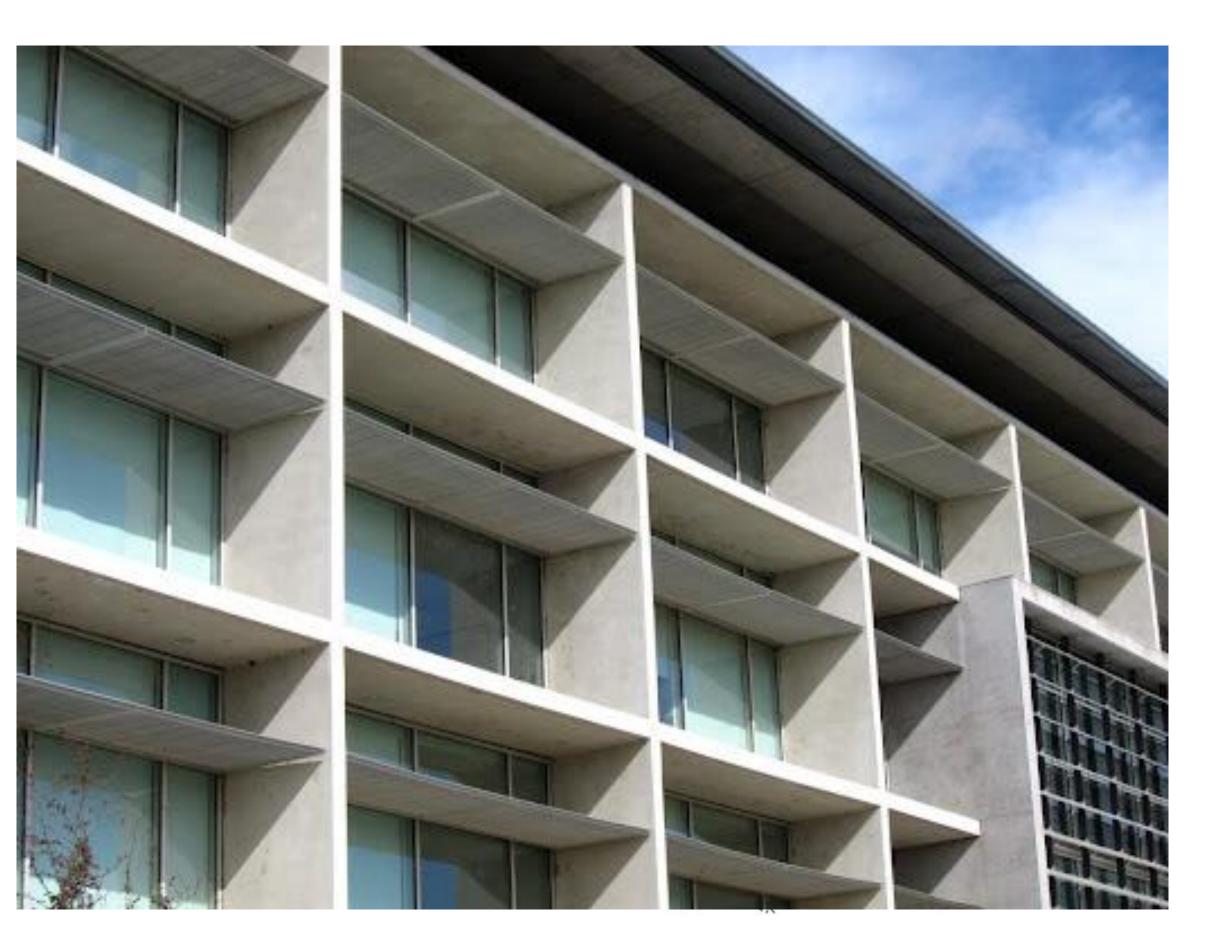

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients

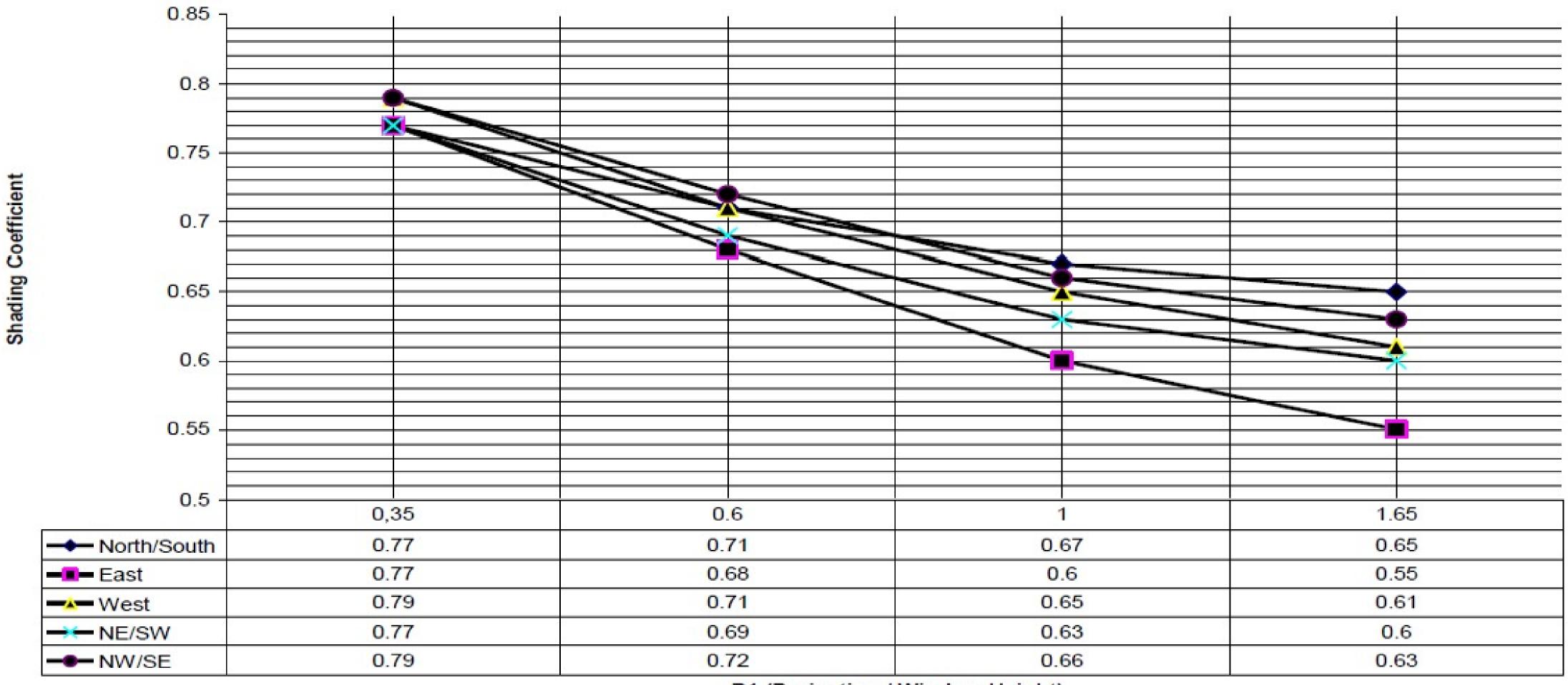


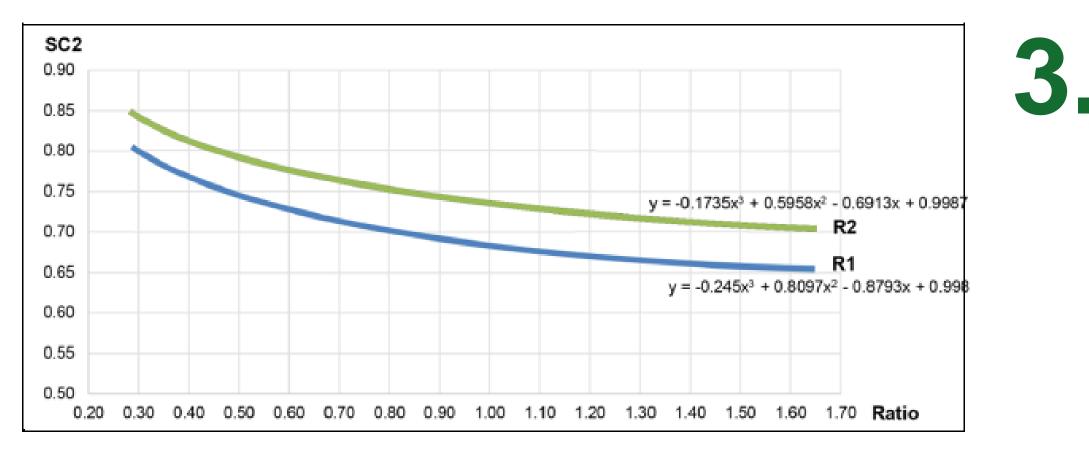


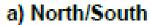


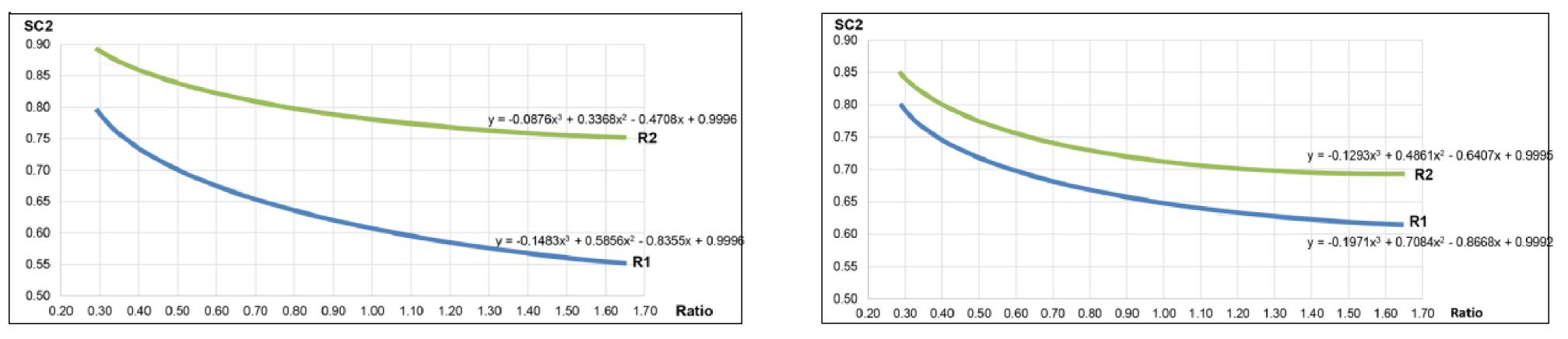


Which one is better?

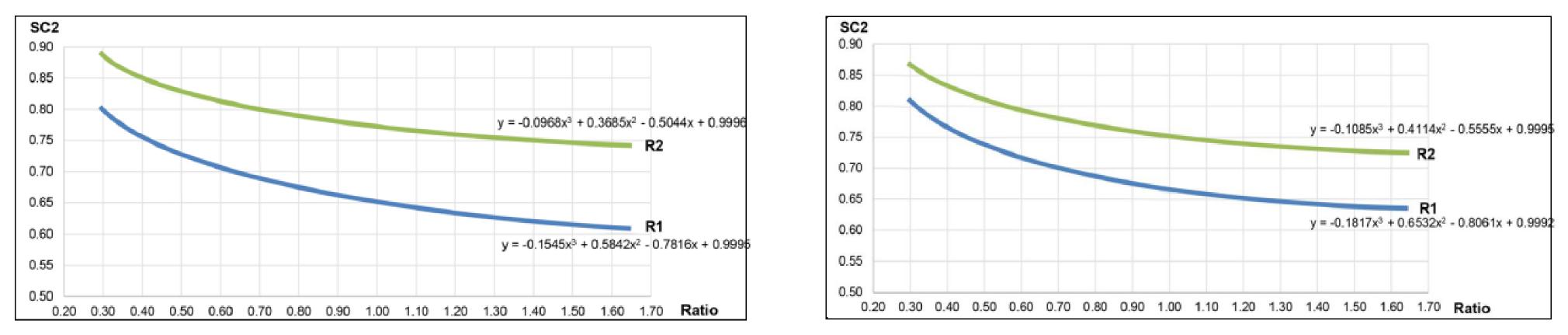


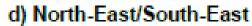



HORIZONTAL PROJECTION SHADING COFFICIENTS



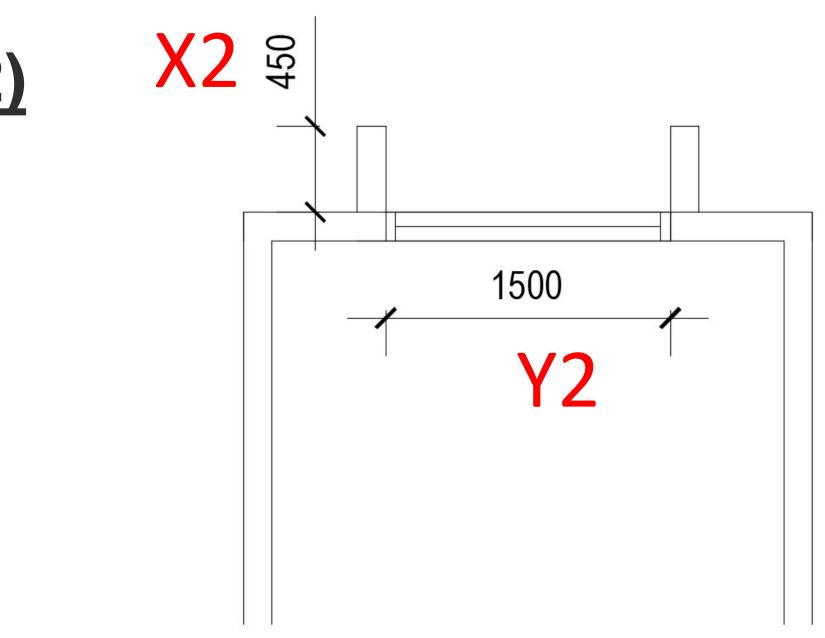
R1 (Projection / Window Height)





3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

e) North-West/South-West



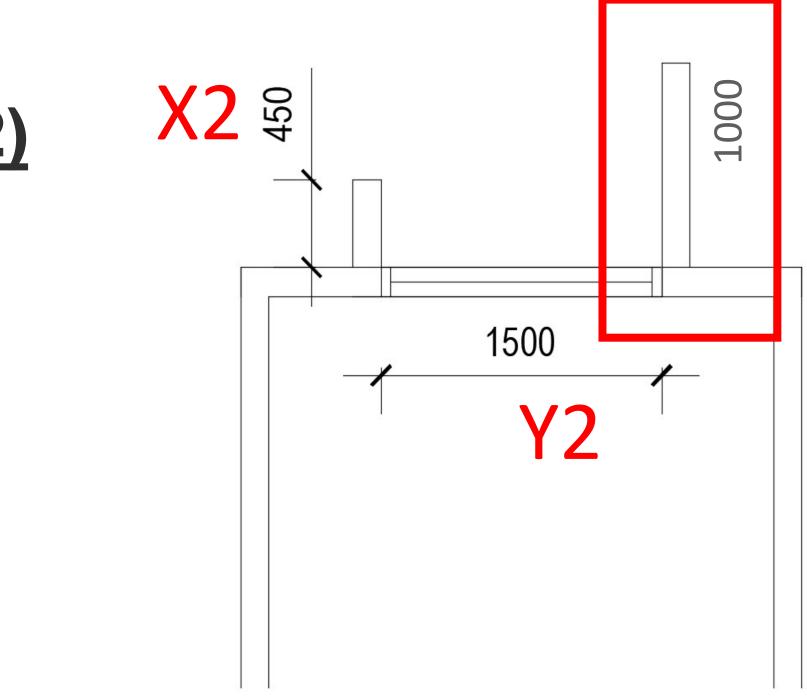
Vertical Projection (R2)

R2 = X2 / Y2= 450 / 1500 = 0.3

R2	0.3 to 0.4	0.5 to 0.7	0.8 to 0.12	1.3 to 2.0
North/South	0.82	0.77	0.73	0.7
East	0.87	0.82	0.78	0.75
West	0.86	0.81	0.77	0.74
NE/SW	0.83	0.77	0.72	0.69
NW/SE	0.84	0.79	0.74	0.71

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

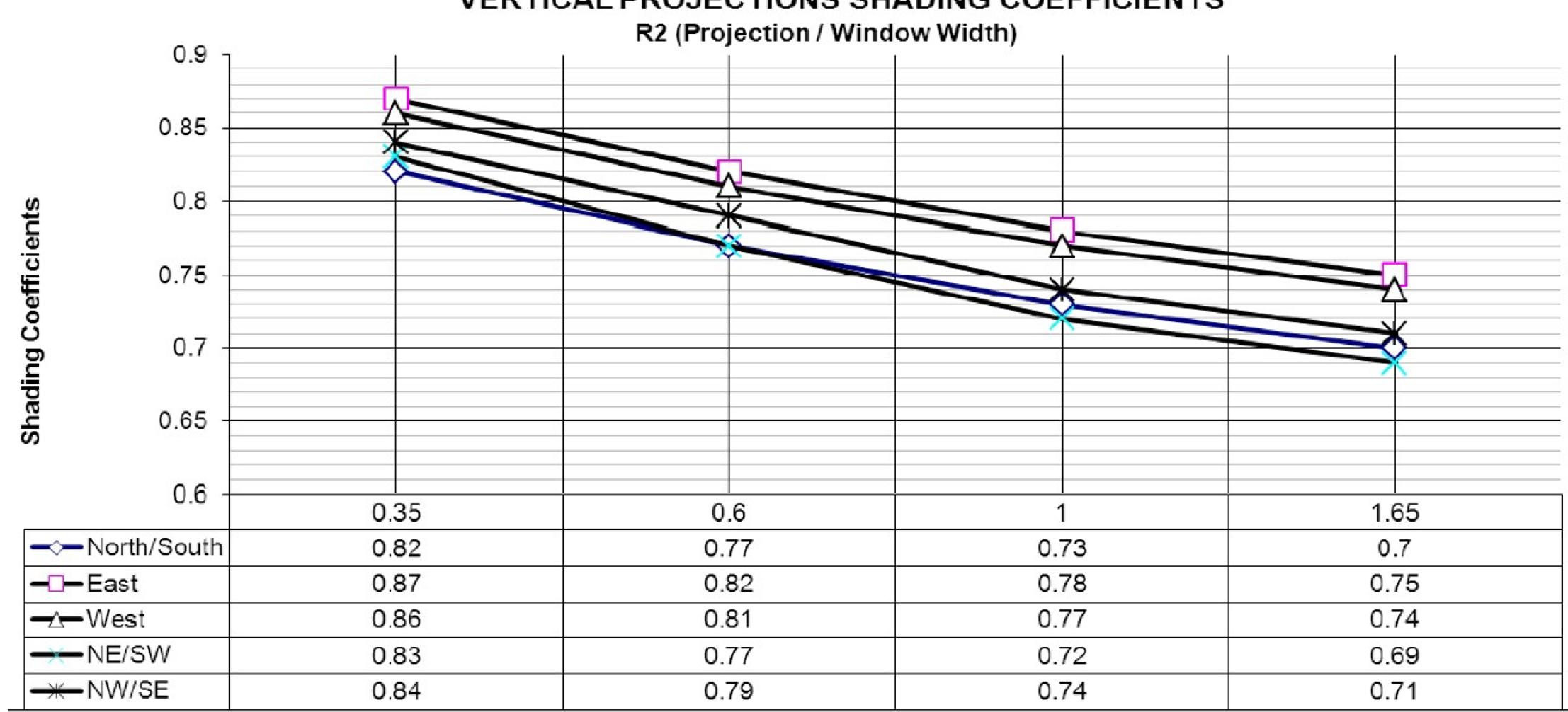
VERTICAL PROJECTIONS SHADING COFFICIENTS



Vertical Projection (R2)

R2 = X2 / Y2= 450 / 1500 = 0.3

R2	0.3 to 0.4	0.5 to 0.7	0.8 to 0.12	1.3 to 2.0
North/South	0.82	0.77	0.73	0.7
East	0.87	0.82	0.78	0.75
West	0.86	0.81	0.77	0.74
NE/SW	0.83	0.77	0.72	0.69
NW/SE	0.84	0.79	0.74	0.71


3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

VERTICAL PROJECTIONS SHADING COFFICIENTS

Figure 6. Vertical projection shading coefficients

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical)

VERTICAL PROJECTIONS SHADING COEFFICIENTS

1. Orientation Factor

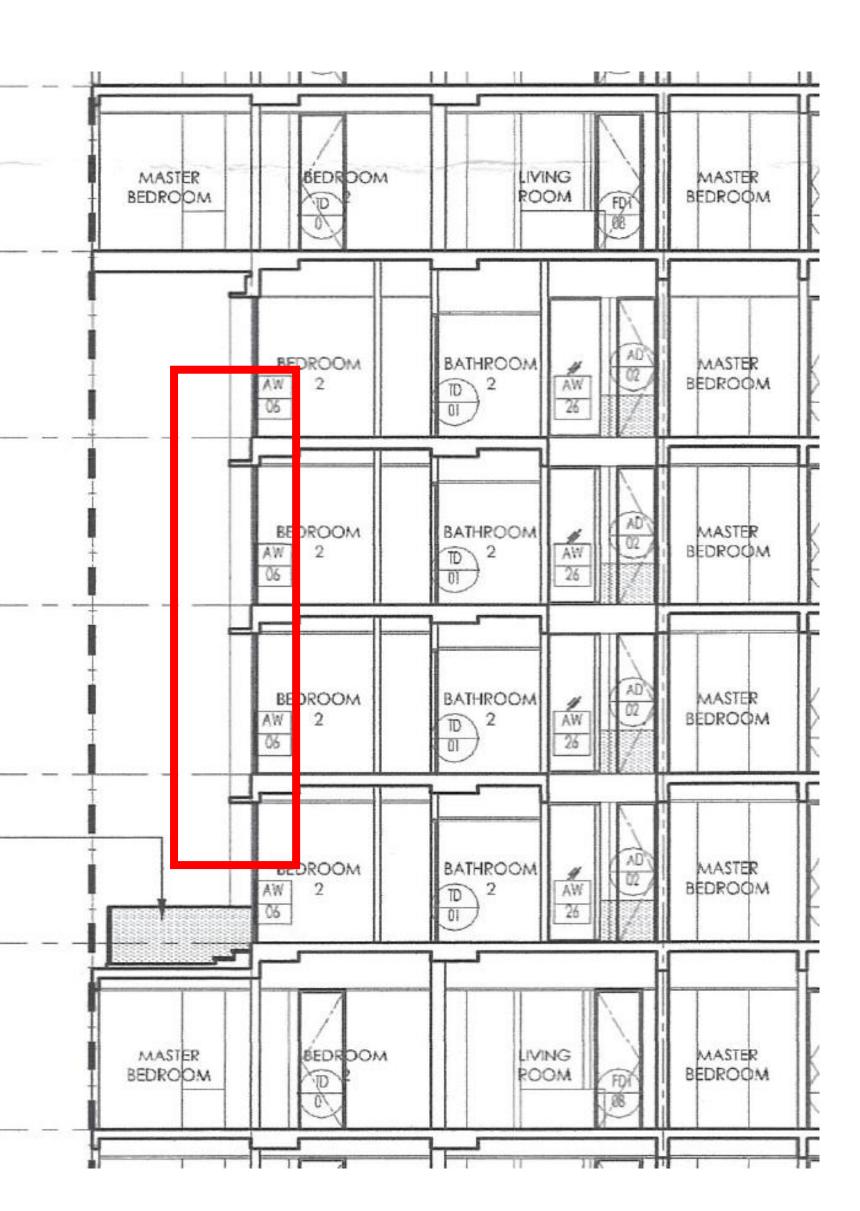
- 2. Window-to-Wall Ratio
 - 3. Shading Coefficient
 - SC2: Horizontal or Vertical Shading **Devices better?**

R2	0.3 to 0.4	0.5 to 0.7	0.8 to 0.12	1.3 to 2.0
North/South	0.82	0.77	0.73	0.7
East	0.87	0.82	0.78	0.75
West	0.86	0.81	0.77	0.74
NE/SW	0.83	0.77	0.72	0.69
NW/SE	0.84	0.79	0.74	0.71

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical) Horizontal or Vertical Shading Devices better?

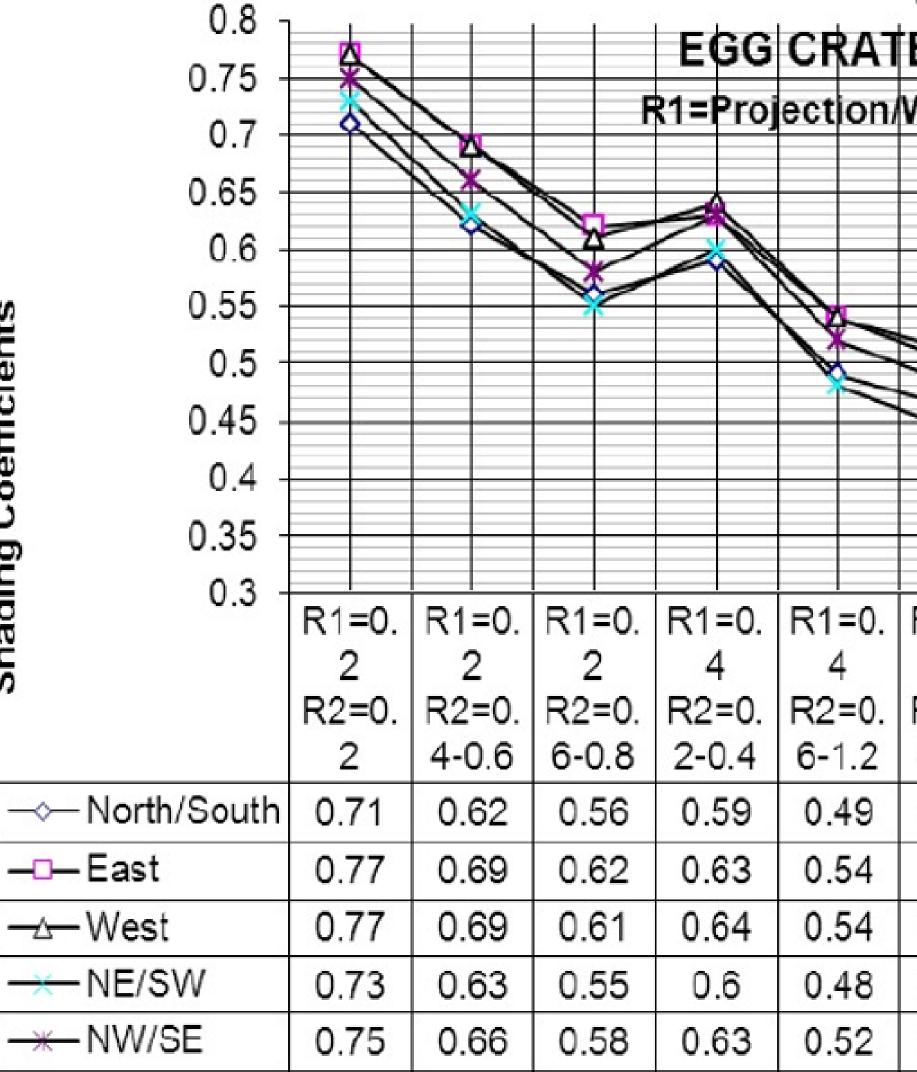
VERTICAL PROJECTIONS SHADING COFFICIENTS


Figure 5. Horizontal projection shading coefficients

Horizontal Shading Devices: Around 10% More Efficient

						1												
10 Stonor						Material	ls	Uv _{glazing}	Scglazing				Wal	I Specificati	on			
							Glazing Spec	ification					terials			Uv Wall	(α)	
				Glass-01	(5 + 1.14 + 6 da	rk blue	4.90	0.59		110mm Thk. Bri		h 20mm thi ;ide	ick plaster	on both	2.66		
				Glass-02		5 + 0.38 + 6 da	rk blue	5.36	0.52		C	olour of Wa	alls - Light	Grey			0.4	
ΟΤΤΟ	51.30	w/m2K		Glass-03	b	reezeway 6 te	empered	6.20	0.74									
				Glass-04	6+().38 + 6 arctic	blue low-e	3.76	0.41									
Total Façade Area (m2)	340	01.73		Glass-05	6 arc	tic blue temp	ered low-e	3.85	0.41									
Total Window Area (m2)	108	83.02		Glass-06	6	dark blue te	mpered	5.20	0.66									
WWR	0	.32																
				1		ΟΤΤΥ Ο	ALCULATION _S	TONOR										
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constant _{window}	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	OTTV x AREA
Orientation : South																		
Level : Ground Floor		1																
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3061.93
SOUTH_Ground Floor ($6 + 1.14 + 6$ dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor ($6 + 0.38 + 6$ dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor	•	•																
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor						I											I I	
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	1.00	1.00	0.52	103.60	6024.49
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.78	1.00	0.40	85.79	3075.90
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	1.00	1.00	0.52	70.71	3186.47
Level : 10th & 16th Floor	•					.									L		ι ι	
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	1.00	1.00	0.52	94.73	12258.14
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	5.36	194.00	0.92	0.52	0.79	1.00	0.41	79.70	6359.61
	400.00	45.07	55.00	45.00	<u> </u>	0.55	2.00	6.00	o +r	5.05	404.00	0.00	0.50	4.00	4.00	0.50	65 AC	6505 00

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical) **OTTV = 51.30 W/m² (Non Low-E)**



10 Ctopor						Materia	als	Uvglazing	Scglazing				Wal	l Specificati	on			
10 Stonor							Glazing Spe	cification				Ma	terials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 d	ark blue	4.90	0.59		110mm Thk. Bri		h 20mm thi ide	ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 d	ark blue	5.36	0.52		C	olour of Wa		Grey			0.4	
οττν	47.98	w/m2K		Glass-03	b	reezeway 6 t	empered	6.20	0.74									
	47150	W/11121X		Glass-04			blue low-e	3.76	0.41									
Total Facado Aroa (m2)	240	01.73						3.85	0.41									
Total Façade Area (m2)				Glass-05			pered low-e											
Total Window Area (m2)	108	83.02		Glass-06	6 6	5 dark blue t	empered	5.20	0.66									
WWR	0).32																
						OTTV	CALCULATION _S	TONOR										
	5 1 4 22				1													
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uv _{glazing}	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	ΟΤΤΥ	OTTV x AREA
Orientation : South Level : Ground Floor																		
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3061.93
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
				_				-		4.00	104.00	0.02	0.50	0.00	1.00	0.20		
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor										_								
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	0.77	1.00	0.40	86.44	5026.51
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.78	1.00	0.40	85.79	3075.90
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	0.77	1.00	0.40	59.99	2703.34
Level : 10th & 16th Floor																		
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	0.77	1.00	0.40	79.30	10262.18
					<u> </u>													

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal or Vertical) OTTV = 47.98 W/m² (Non Low-E + HD:1000)

3. SC

Shading Coefficients

Figure 7. Egg crate shading coefficients

S	ha	dir	١g	Сс)ef	fic	ier	nt (S (
C2: \$	Shad	ding	Devi	ces	(Hor	izon	tal a	nd V	ertic
0						10 17 I	s s s	3 (3	
'E \$H/	ADING	COF	FICIEN	ITS					
Windo	wHeigh	t R2=P	rojectio	on/Wine	lowWic	lth			
			*		Å				
X/									
Y	,								
		×		\mathbf{V}		V		*	
R1=0.	R1=0.	R1=0.	R1=0.	R1=0.	R1=1	R1=1	R1=1	R1=1.	
4	6	6	8	8				210	
		1122 N 1222	802963 Stor 100	101/09/07 100/20	R2=0	R2=0	R2=1	2-1.8	
R2=1.	R2=0.	R2=0.	R2=0.	R2=0.	R2=0. 2-0.4	R2=0. 6-1.2	R2=1. 4-1.8	R2=0.	
4-1.8	2-0.6	8-1.8	R2=0. 2-0.6	R2=0. 8-1.8	2-0.4	6-1.2	4-1.8	R2=0. 2-1.8	
	1 3 XXX 3 x 3 XXX ***		R2=0.	R2=0.	영양/영향 공부 공부 공		1993 - 10 - 1993 -	R2=0.	
4-1.8	2-0.6	8-1.8	R2=0. 2-0.6	R2=0. 8-1.8	2-0.4	6-1.2	4-1.8	R2=0. 2-1.8	
4-1.8 0.46	2-0.6 0.52	8-1.8 0.43	R2=0. 2-0.6 0.5	R2=0. 8-1.8 0.4	2-0.4 0.51	6-1.2 0.41	4-1.8 0.38	R2=0. 2-1.8 0.38	
4-1.8 0.46 0.5	2-0.6 0.52 0.54	8-1.8 0.43 0.44	R2=0. 2-0.6 0.5 0.49	R2=0. 8-1.8 0.4 0.39	2-0.4 0.51 0.48	6-1.2 0.41 0.39	4-1.8 0.38 0.35	R2=0. 2-1.8 0.38 0.33	

VERTICAL PROJECTIONS SHADING COFFICIENTS

R2	0.3 to 0.4	0.5 to 0.7	0.8 to 0.12	1.3 to 2.0
North/South	0.82	0.77	0.73	0.7
East	0.87	0.82	0.78	0.75
West	0.86	0.81	0.77	0.74
NE/SW	0.83	0.77	0.72	0.69
NW/SE	0.84	0.79	0.74	0.71

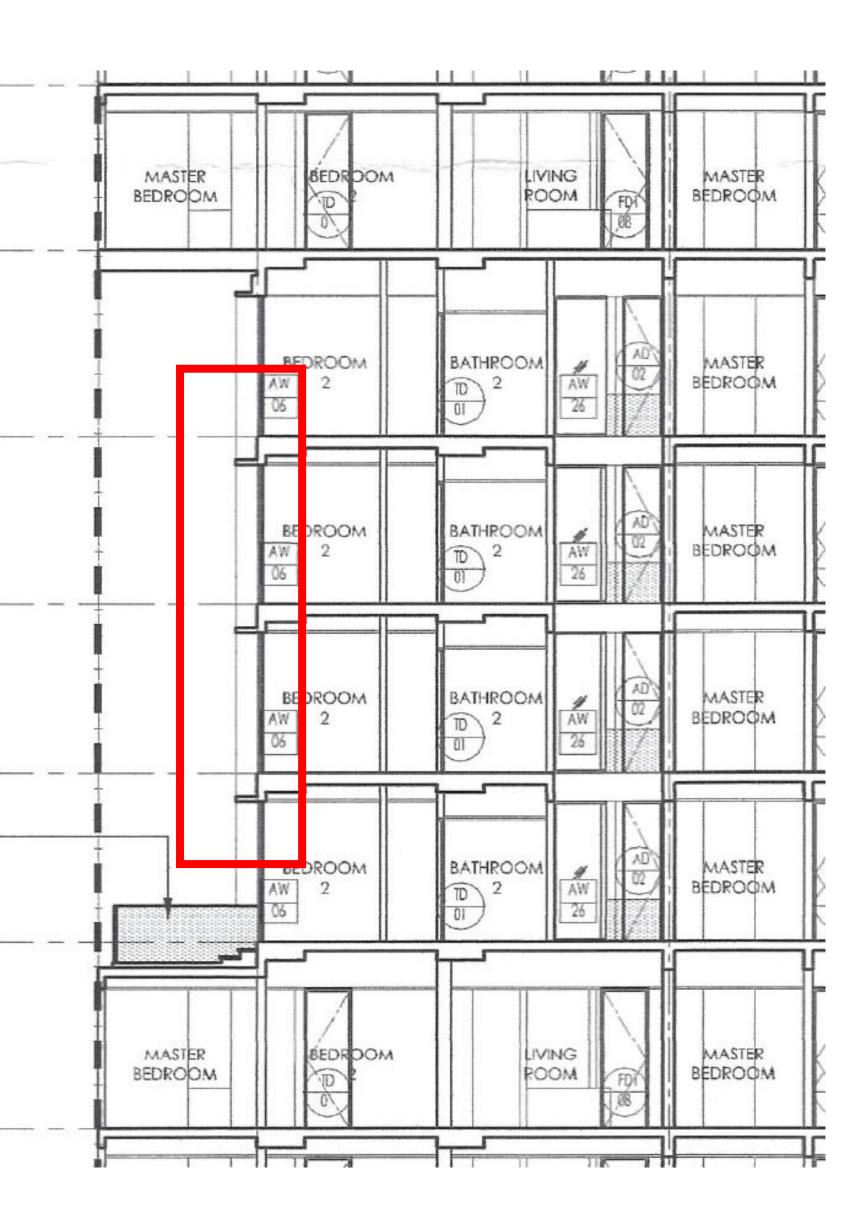

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients

R1&R2	R1=0.2 R2=0.2	R1=0.2 R2=0.4- 0.6	R1=0.2 R2=0.6- 0.8	R1=0.4 R2=0.2- 0.4	R1=0.4 R2=0.6- 1.2	R1=0.4 R2=1.4- 1.8	R1=0.6 R2=0.2- 0.6	R1=0.6 R2=0.8- 1.8	R1=0.8 R2=0.2- 0.6	R1=0.8 R2=0.8- 1.8	R1=1 R2=0.2- 0.4	R1=1 R2=0.6- 1.2	R1=1 R2=1.4- 1.8	1.8 R2=0.2- 1.8
North/South	0.71	0.62	0.56	0.59	0.49	0.46	0.52	0.43	0.5	0.4	0.51	0.41	0.38	0.38
East	0.77	0.69	0.62	0.63	0.54	0.5	0.54	0.44	0.49	0.39	0.48	0.39	0.35	0.35
West	0.77	0.69	0.61	0.64	0.54	0.51	0.56	0.46	0.52	0.42	0.52	0.42	0.38	0.38
NE/SW	0.73	0.63	0.55	0.6	0.48	0.44	0.51	0.39	0.47	0.36	0.48	0.36	0.32	0.32
NW/SE	0.75	0.66	0.58	0.63	0.52	0.48	0.55	0.44	0.52	0.41	0.52	0.42	0.38	0.38

10 Stopar						Materia	als	Uv _{glazing}	Scglazing				Wal	II Specificati	ion			
10 Stonor							Glazing Spec	cification				Ma	aterials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 da	ark blue	4.90	0.59	1	110mm Thk. Bri			ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 da	ark blue	5.36	0.52		(s Colour of Wa	side alls - Light	Grey			0.4	
ΟΤΤV	17.08	w/m2K	+	Glass-03		breezeway 6 t		6.20	0.74	4			-					
	47.90	W/IIIZK					-			+								
				Glass-04		0.38 + 6 arctic		3.76	0.41	-								
Total Façade Area (m2)	340	001.73		Glass-05		ctic blue tem		3.85	0.41	-								
Total Window Area (m2)	108	883.02		Glass-06		6 dark blue te	empered	5.20	0.66									
WWR	0	0.32																
						1	CALCULATION _S							1				
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constant _{window}	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	ΟΤΤΥ	OTTV x AREA
Orientation : South																		
Level : Ground Floor				15.00	2.10	1.00				1 1	,		1	Т	1			
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00			l	 		ļ/	 	15.96	3061.93
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor														1		1		
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor																		
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	0.77	1.00	0.40	86.44	5026.51
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.78	1.00	0.40	85.79	3075.90
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	0.77	1.00	0.40	59.99	2703.34
Level : 10th & 16th Floor																		
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	0.77	1.00	0.40	79.30	10262.18
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	5.36	194.00	0.92	0.52	0.79	1.00	0.41	79.70	6359.61

3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal and Vertical) OTTV = 47.98 W/m² (Non Low-E + HD:1000)

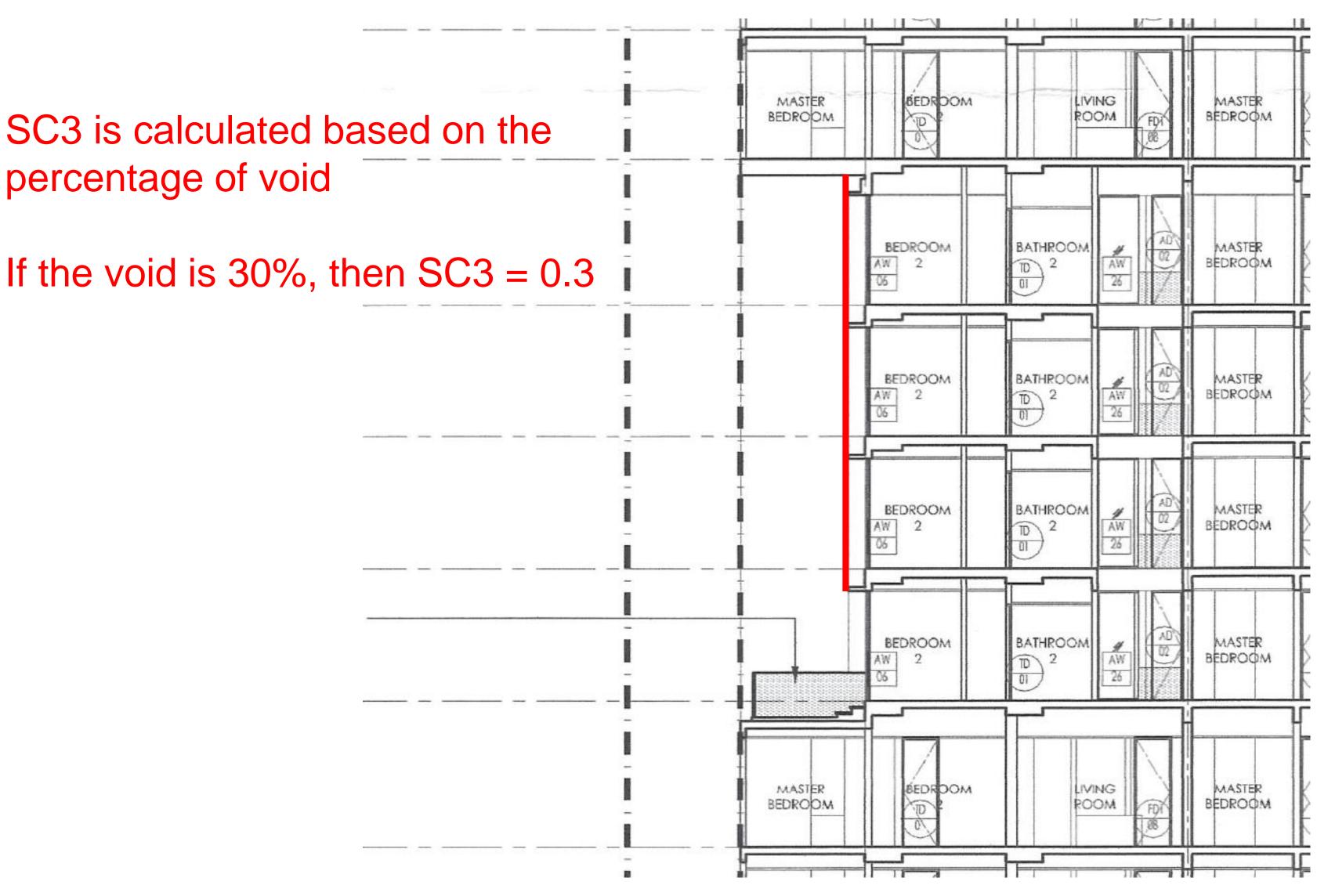
3. Shading Coefficient (SC) SC2: Shading Devices (Horizontal and Vertical) OTTV = 44.37 W/m² (Non Low-E + HD:1000 + VD:600)

										-			1					
10 Stonor						Materi	als	Uv _{glazing}	Scglazing				Wa	II Specificat	ion			
							Glazing Spec	ification				М	aterials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 d	ark blue	4.90	0.59		110mm Thk. Br		th 20mm th side	ick plaster	r on both	2.66		
				Glass-02		6 + 0.38 + 6 d	lark blue	5.36	0.52		(/alls - Light	Grey			0.4	
ΟΤΤΟ	44.37	w/m2K		Glass-03	t	preezeway 6	tempered	6.20	0.74									
				Glass-04	6+	0.38 + 6 arcti	c blue low-e	3.76	0.41									
Total Façade Area (m2)	34	001.73		Glass-05	6 ar	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	10	883.02		Glass-06		6 dark blue t	empered	5.20	0.66									
wwr		0.32																
		-				ΟΤΤΟ	CALCULATION _S	TONOR										
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	OTTV x
Orientation : South																		
Level : Ground Floor	- 1	1			1	1		_	1	-					1			
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3061
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.
Level : 8th Floor	•																	
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.
Level : 9th Floor		1				•			•	•				1	•	1		
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.0
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	0.59	1.00	0.31	73.01	4245
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.59	1.00	0.31	72.01	2581
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	0.59	1.00	0.31	51.60	2325
Level : 10th & 16th Floor	1			-		1			1							1		
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	0.59	1.00	0.31	67.23	8700.
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	5.36	194.00	0.92	0.52	0.59	1.00	0.31	66.33	5292
	1	1	I I		1	1	· · ·		1			1				1	++	

	_
/ x AREA	
61.93	
00.82	
36.50	
73.52	
21.88	
85.85	
45.49	
81.77	
25.24	
.93.86	
00.13	
92.49	

1. Orientation Factor

2. Window-to-Wall Ratio


3. Shading Coefficient SC3: Sunscreen

SC3 is calculated based on the percentage of void

3. Shading Coefficient (SC) SC3: Sunscreen

OTTV = 44.93 W/m² (Non Low-E + Sunsceeen 70% Void)

10 Ctores						Materi	als	Uv _{glazing}	Sc _{glazing}				Wal	I Specificat	ion			
10 Stonor					Glazing Specifi			cification				Ma	terials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 d	ark blue	4.90	0.59		110mm Thk. Bri			ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 d	ark blue	5.36	0.52		(colour of W	side alls - Light	Grey			0.4	
οττν	11 93	w/m2K		Glass-03		oreezeway 6	tempered	6.20	0.74				-					
	44.55	W/IIIZK		Glass-04			c blue low-e	3.76	0.41									
	240	01.72																
Fotal Façade Area (m2)		01.73		Glass-05			pered low-e	3.85	0.41									
Total Window Area (m2)	1088	83.02		Glass-06		6 dark blue t	empered	5.20	0.66									
WWR	0.	.32																
						ΟΤΤΛ	CALCULATION _	STONOR										
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)		Constantwindow	WWR	Uvgiazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	OTTV x ARE/
Orientation : South	ruçuuc (mz)	Window (in2)	Wun (m2)	constantwall		(1-1111)	U Wall	Constantewindow		glazing	Constantishading	C.	Orglazing	Ocdevice	Stoscreen	50		OTTEXAND
Level : Ground Floor																		
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3061.93
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	3400.82
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	2036.50
Level : 8th Floor														, ,			· · ·	
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	3573.52
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3821.88
Level : 9th Floor						- -											· · ·	
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	985.85
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	5.36	194.00	0.92	0.52	1.00	0.70	0.36	81.22	4722.78
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	5.36	194.00	0.92	0.52	0.78	0.70	0.28	68.68	2462.44
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	5.36	194.00	0.92	0.52	1.00	0.70	0.36	56.72	2556.30
Level : 10th & 16th Floor			· ·			1											1	
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	2193.86
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	5.36	194.00	0.92	0.52	1.00	0.70	0.36	74.61	9654.72
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	5.36	194.00	0.92	0.52	0.79	0.70	0.29	64.03	5109.03

3. Shading Coefficient (SC) SC3: Sunscreen

1. Orientation Factor

- 2. Window-to-Wall Ratio
 - 3. Shading Coefficient SC2: Which Shading Devices is more a. Effective ? b. Cheaper?

VERTICAL PROJECTIONS SHADING COFFICIENTS

R2	0.3 to 0.4	0.5 to 0.7	0.8 to 0.12	1.3 to 2.0
North/South	0.82	0.77	0.73	0.7
East	0.87	0.82	0.78	0.75
West	0.86	0.81	0.77	0.74
NE/SW	0.83	0.77	0.72	0.69
NW/SE	0.84	0.79	0.74	0.71

R1	0.3 to 0.4	0.5 to 0.7	0.8 to 1.2	1.3 to 2.0
North/South	0.77	0.71	0.67	0.65
East	0.77	0.68	0.6	0.55
West	0.79	0.71	0.65	0.61
NE/SW	0.77	0.69	0.63	0.6
NW/SE	0.79	0.72	0.66	0.63

Figure 5. Horizontal projection shading coefficients

R1&R2	R1=0.2 R2=0.2	R1=0.2 R2=0.4- 0.6	R1=0.2 R2=0.6- 0.8	R1=0.4 R2=0.2- 0.4	R1=0.4 R2=0.6- 1.2	R1=0.4 R2=1.4- 1.8	R1=0.6 R2=0.2- 0.6	R1=0.6 R2=0.8- 1.8	R1=0.8 R2=0.2- 0.6	R1=0.8 R2=0.8- 1.8	R1=1 R2=0.2- 0.4	R1=1 R2=0.6- 1.2	R1=1 R2=1.4- 1.8	1.8 R2=0.2- 1.8
North/South	0.71	0.62	0.56	0.59	0.49	0.46	0.52	0.43	0.5	0.4	0.51	0.41	0.38	0.38
East	0.77	0.69	0.62	0.63	0.54	0.5	0.54	0.44	0.49	0.39	0.48	0.39	0.35	0.35
West	0.77	0.69	0.61	0.64	0.54	0.51	0.56	0.46	0.52	0.42	0.52	0.42	0.38	0.38
NE/SW	0.73	0.63	0.55	0.6	0.48	0.44	0.51	0.39	0.47	0.36	0.48	0.36	0.32	0.32
NW/SE	0.75	0.66	0.58	0.63	0.52	0.48	0.55	0.44	0.52	0.41	0.52	0.42	0.38	0.38

3. Shading Coefficient (SC) SC3: Sunscreen

4. U-value of Fenestration (Glass)

Note: U-value is insulating performance (Conduction).

1. Orientation Factor

2. Window-to-Wall Ratio

3. Shading Coefficient

No	Glass	Thk	: (mm)	VLT	U-Value	SC-Value	OTTV (W/m²)
Base	Light Clear Tempered Float with Heat Soaked	10.00		87.00%	5.70	0.90	102.84
а	Light Green Tempered Float with Heat Soaked	10.00		70.00%	5.10	0.59	72.80
b	Light Green Annealed Float + Clear PVB + Clear Annealed Float	10.38	5.00 + 0.38 + 5.00	78.00%	5.10	0.69	81.79
с	Light Green Annealed Float + Clear PVB + Clear Annealed Hard Coated Low-E#4	10.38	5.00 + 0.38 + 5.00	71.00%	2.90	0.57	63.08
d	No Information						
е	Light Green Heat Strenghthened Float + Clear PVB + Clear Heat Strenghthened Hard Coated Low-E#4	13.52	6.00 + 1.52 + 6.00	68.00%	2.80	0.52	58.22
f	(Clear Heat Strenghthened Float + Clear PVB + SV 40T Clear Heat Strenghthened Soft Coated Low-E#4) + A12 + Clear Heat Strenghened Float	31.52	6.00 + 1.52 + 6.00 + 12.00 (air) + 6.00	39.00%	1.50	0.24	28.36
g	(Clear Heat Strenghthened Float + Clear PVB + <mark>SV 52T</mark> Clear Heat Strenghthened Soft Coated Low-E#4) + A12 + Clear Heat Strenghened Float	31.52	6.00 + 1.52 + 6.00 + 12.00 (air) + 6.00	48.00%	1.50	0.30	33.75
h	Solar Control Silver Grey Tempered with Heat Soaked Soft Coated Reflective V1#2	<mark>6.00</mark>		19.00%	4.30	0.35	48.33
i	Solar Control Silver Green Tempered with Heat Soaked Soft Coated Reflective V2#2	6.00		13.00%	4.00	0.27	40.05
j	Solar Control Silver Grey Annealed Soft Coasted V1#2 + Clear PVB + Clear Heat Annealed Hard Coasted Low-E#4	10.38	5.00 + 0.38 + 5.00	20.00%	2.80	0.28	36.63

4. U-value of Glass

4. U-value of Fenestration (Glass) Glass U-Value or SC-Value more important?

- **1. Orientation Factor**
 - 2. Window-to-Wall Ratio
 - 3. Shading Coefficient

5. U-value of Wall

Note: U-value is insulating performance (Conduction).

4. U-value of Fenestration (Glass)

1. Orientation Factor

2. Window-to-Wall Ratio

3. Shading Coefficient

LIGHTWEIGHT BLOCK WALL			
Component (outside to inside)	Thickness	Conducitvity	Resistance
	mm	w/(m.K)	T/C
Outside Surface Resistance			0.040
Cement sand plaster	12	0.533	0.023
Lightweight Blocks 64 kg/m3	150	0.144	1.042
Cement sand plaster	12	0.533	0.023
Inside Surface Resistance			0.130
Total Thermal resistance			1 257
U-value (W/m2K)			0.796

BRICK WALL			
Component (outside to inside)	Thickness	Conducitvity	Resistance
	mm	w/(m.K)	T/C
Outside Surface Resistance			0.040
Cement sand plaster	12	0.533	0.023
Brickwall (dry)	115	0.807	0.143
Cement sand plaster	12	0.533	0.023
Inside Surface Resistance			0.130
Total Thermal resistance			0.358
U-value (W/m2K)			2.797

CONCRETE BEAM / WALL			
Component (outside to inside)	Thickness	Conducitvity	Resistance
	mm	w/(m.K)	T/C
Outside Surface Resistance			0.040
Cement sand plaster	12	0.533	0.023
Reinforced Concrete	250	1.442	0.173
Cement sand plaster	12	0.533	0.023
Inside Surface Resistance			0.130
Total Thermal resistance			0 388
U-value (W/m2K)			2.575

Component (outside to inside)	Thickness	Conducitvity	Resistance
	mm	w/(m.K)	T/C
Outside Surface Resistance			0.040
Aluminium Composite	4	211	0.000
Air gap			0.160
Brickwall (dry)	115	0.807	0.143
Cement sand plaster	12	0.533	0.023
Inside Surface Resistance			0.130
Total Thermal resistance			0.495
U-value (W/m2K)			2.020

ALUMINIUM COMPOSITE PANEL WITH INSIDE INSULATION											
Component (outside to inside)	Thickness	Conducitvity	Resistance								
	mm	w/(m.K)	T/C								
Outside Surface Resistance			0.040								
Aluminium Composite	4	211	0.000								
Air gap			0.160								
Fiberglass	75	0.035	2.143								
Gypsum Board	12	0.17	0.071								
Inside Surface Resistance			0.130								
Total Thermal resistance			2 543								
U-value (W/m2K)			0.393								

5. U-value of Wall

What is the U-value to Cavity Brick Wall?

6. Solar Absorptivity of Wall (Color)

5. U-value of Wall

4. U-value of Fenestration (Glass)

1. Orientation Factor

2. Window-to-Wall Ratio

3. Shading Coefficient

a : 95%	a : 78%	a : 72%	a:64%
QC 8262 Black	QC 8641 Sable	QC 8306 Charcoal	QC 8730 Regent Grey
a : 76%	a : 75%	a : 74%	a : 74%
QC 8229 Dark Brown	QC 8326 Black Coffee	QC 8228 Metro Brown	QC 8643 Cordovan
a:71%	a:67%	a :66%	
QC 8014 Canners Brown	QC 8315 Tan	QC 8055 Buckskin	
a : 90%	a : 89%	a : 76%	a : 73%
QC 8330 Heron Blue	QC 8107 Navy Blue	QC 8790 Royal Blue	QC 8260 Slate Blue
a : 91%	a : 78%	a : 74%	a : 73%
QC 8307 Melcher's Green	QC 8684 Deep Water Green	QC 8329 Green	QC 8258 Pacific Turquoise
al:78%	a : 69%	a:67%	a : 54%
QC 8250 Dark Red	QC 8259 Tile Red	QC 8386 Bright red	QC 8234 International Orange
a : 55%	a:47%	a:45%	a : 44%
QC 8276 Gold	QC 8076 Putnam Ivory	QC 8021 Beige	QC 8696 Antique Linen
a : 48%	a : 42%		
QC 8119 Biscuit	QC 8784 Bamboo Ivory		
a : 52%	a:45%	a:41%	a : 38%
QC 8273 Bone white	QC 8317 White white	QC 8464 USDA White	QC 8695 Cambridge white

a : 71%

QC 8719 Mahogany Brown

a : 56% QC 8261 Saphire Blue a : 72% QC 8310

Turquoise

Qc 8256 Mist Green

a : 42%

QC 8802 Ivory

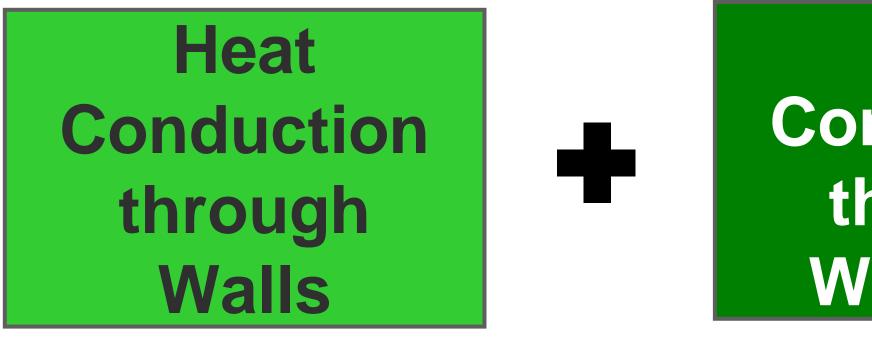
a : 34%

QC 8783 Bright white

6. Wall Color

						Materia	als	Uvglazing	Scglazing				Wal	II Specificat	ion			
10 Stonor							Glazing Spe	ification	<u> </u>			Ma	aterials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 da	ark blue	4.90	0.59		110mm Thk. Bri		th 20mm th side	ick plaster	on both	2.66		
				Glass-02		6 + 0.38 + 6 da	ark blue	5.36	0.52		0	Colour of W		Grey			0.4	
ΟΤΤV	44.65	w/m2K		Glass-03	t	preezeway 6 t	empered	6.20	0.74									
				Glass-04	6+	0.38 + 6 arctic	blue low-e	3.76	0.41									
Total Façade Area (m2)	340	001.73		Glass-05	6 ar	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	108	383.02		Glass-06		6 dark blue te	empered	5.20	0.66									
wwR).32																
			-															
		1				οττν	CALCULATION _	TONOR	-				1					
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uvglazing	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	οττν
Orientation : South																		
Level : Ground Floor	T	T				1 1							1	1	1		· · · · ·	
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.40	1.00	2.66	6.00	0.00								15.96	30
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.40	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	61.83	34
SOUTH_Ground Floor (6 + 0.38 + 6 dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.40	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	74.05	20
Level : 8th Floor																		
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.40	1.00	2.66	6.00	0.00								15.96	35
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.40	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	38
Level : 9th Floor													1	•	•			
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.40	1.00	2.66	6.00	0.00								15.96	98
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.40	0.20	2.66	6.00	0.80	3.76	194.00	0.92	0.41	1.00	1.00	0.41	80.10	46
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.40	0.21	2.66	6.00	0.79	3.76	194.00	0.92	0.41	0.78	1.00	0.32	66.14	23
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.40	0.50	2.66	6.00	0.50	3.85	194.00	0.92	0.41	1.00	1.00	0.41	56.30	25
Level : 10th & 16th Floor													•		•			
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	21
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	3.76	194.00	0.92	0.41	1.00	1.00	0.41	73.60	95
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	3.76	194.00	0.92	0.41	0.79	1.00	0.33	61.84	49

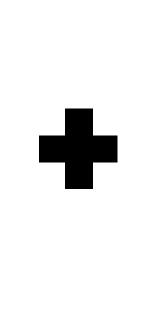
6. Wall Color OTTV = 44.65 W/m² (CVA)


TV x AREA	
3061.93	
3400.82	
2036.50	
3573.52	
3821.88	
985.85	
4657.80	
2371.46	
2537.06	
2193.86	
9524.75	
4934.05	

10 Stopar						Materia	ls	Uv _{glazing}	Scglazing				Wal	II Specificat	ion			
10 Stonor							Glazing Spe	cification				Ma	aterials			Uv Wall	(α)	
				Glass-01		6 + 1.14 + 6 da	ark blue	4.90	0.59		110mm Thk. Bri		th 20mm th side	ick plaste	r on both	2.66		
				Glass-02		6 + 0.38 + 6 da	ark blue	5.36	0.52			Colour of W		Grey			0.7	
ΟΤΤΟ	52.78	w/m2K		Glass-03	t	breezeway 6 t	empered	6.20	0.74									
				Glass-04	6+	0.38 + 6 arctic	blue low-e	3.76	0.41									
Total Façade Area (m2)	34(001.73		Glass-05	6 ar	ctic blue tem	pered low-e	3.85	0.41									
Total Window Area (m2)	10	883.02		Glass-06		6 dark blue te	empered	5.20	0.66									
wwR		0.32																
						ΟΤΤΟ	CALCULATION _S	TONOR										
Location	Façade (m2)	Window (m2)	Wall (m2)	Constant _{wall}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uv _{glazing}	Constant _{shading}	CF	Scglazing	Sc _{device}	Sc _{Screen}	SC	οττν	отт
Orientation : South		•						•										
Level : Ground Floor		1								1				1			1 1	
SOUTH_Ground Floor	191.85	0.00	191.85	15.00	0.70	1.00	2.66	6.00	0.00								27.93	5
SOUTH_Ground Floor (6 + 1.14 + 6 dark blue) (sc = 0.722)	55.00	28.20	26.80	15.00	0.70	0.49	2.66	6.00	0.51	4.90	194.00	0.92	0.59	0.72	1.00	0.43	67.67	3
SOUTH_Ground Floor ($6 + 0.38 + 6$ dark blue) (sc = 0.722)	27.50	19.20	8.30	15.00	0.70	0.30	2.66	6.00	0.70	5.36	194.00	0.92	0.52	0.72	1.00	0.38	77.67	2
Level : 8th Floor	-																	
SOUTH_8th Floor	223.91	0.00	223.91	15.00	0.70	1.00	2.66	6.00	0.00								27.93	6
SOUTH_8th Floor (6 + 1.14 + 6 dark blue) (sc = 0.664)	38.48	38.48	0.00	15.00	0.70	0.00	2.66	6.00	1.00	4.90	194.00	0.92	0.59	0.66	1.00	0.39	99.32	3
Level : 9th Floor																	· · ·	
SOUTH_9th Floor	61.77	0.00	61.77	15.00	0.70	1.00	2.66	6.00	0.00								27.93	1
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e)	58.15	46.75	11.40	15.00	0.70	0.20	2.66	6.00	0.80	3.76	194.00	0.92	0.41	1.00	1.00	0.41	82.45	4
SOUTH_9th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.778)	35.86	28.32	7.54	15.00	0.70	0.21	2.66	6.00	0.79	3.76	194.00	0.92	0.41	0.78	1.00	0.32	68.66	24
SOUTH_9th Floor (6 arctic blue tempered low-e)	45.07	22.63	22.43	15.00	0.70	0.50	2.66	6.00	0.50	3.85	194.00	0.92	0.41	1.00	1.00	0.41	62.26	2
Level : 10th & 16th Floor	1													1	1 1		-I - - I	
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.70	1.00	2.66	6.00	0.00								27.93	3
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.70	0.28	2.66	6.00	0.72	3.76	194.00	0.92	0.41	1.00	1.00	0.41	76.93	9
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.70	0.29	2.66	6.00	0.71	3.76	194.00	0.92	0.41	0.79	1.00	0.33	65.31	5

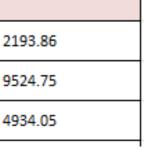
6. Wall Color **OTTV = 52.78 W/m² (Dark Grey Facade)**

TTV x AREA	
5358.37	
3721.62	
3721.62 2135.85	
2135.85	
2135.85 6253.67	
2135.85 6253.67	
2135.85 6253.67 3821.88	
2135.85 6253.67 3821.88 1725.24	
2135.85 6253.67 3821.88 1725.24 4794.23	
2135.85 6253.67 3821.88 1725.24 4794.23 2461.65	
2135.85 6253.67 3821.88 1725.24 4794.23 2461.65	
2135.85 6253.67 3821.88 1725.24 4794.23 2461.65 2805.59	
2135.85 6253.67 3821.88 1725.24 4794.23 2461.65 2805.59 3839.26	



8% to 10%

Level : 10th & 16th Floor																		
SOUTH_10th & 16th Floor	137.46	0.00	137.46	15.00	0.40	1.00	2.66	6.00	0.00								15.96	219
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e)	129.41	93.50	35.90	15.00	0.40	0.28	2.66	6.00	0.72	3.76	194.00	0.92	0.41	1.00	1.00	0.41	73.60	952
SOUTH_10th & 16th Floor (6 + 0.38 + 6 arctic blue low-e) (sc = 0.793)	79.79	56.64	23.15	15.00	0.40	0.29	2.66	6.00	0.71	3.76	194.00	0.92	0.41	0.79	1.00	0.33	61.84	493
												1						


Heat Conduction through Windows

Solar Heat Gain through Windows

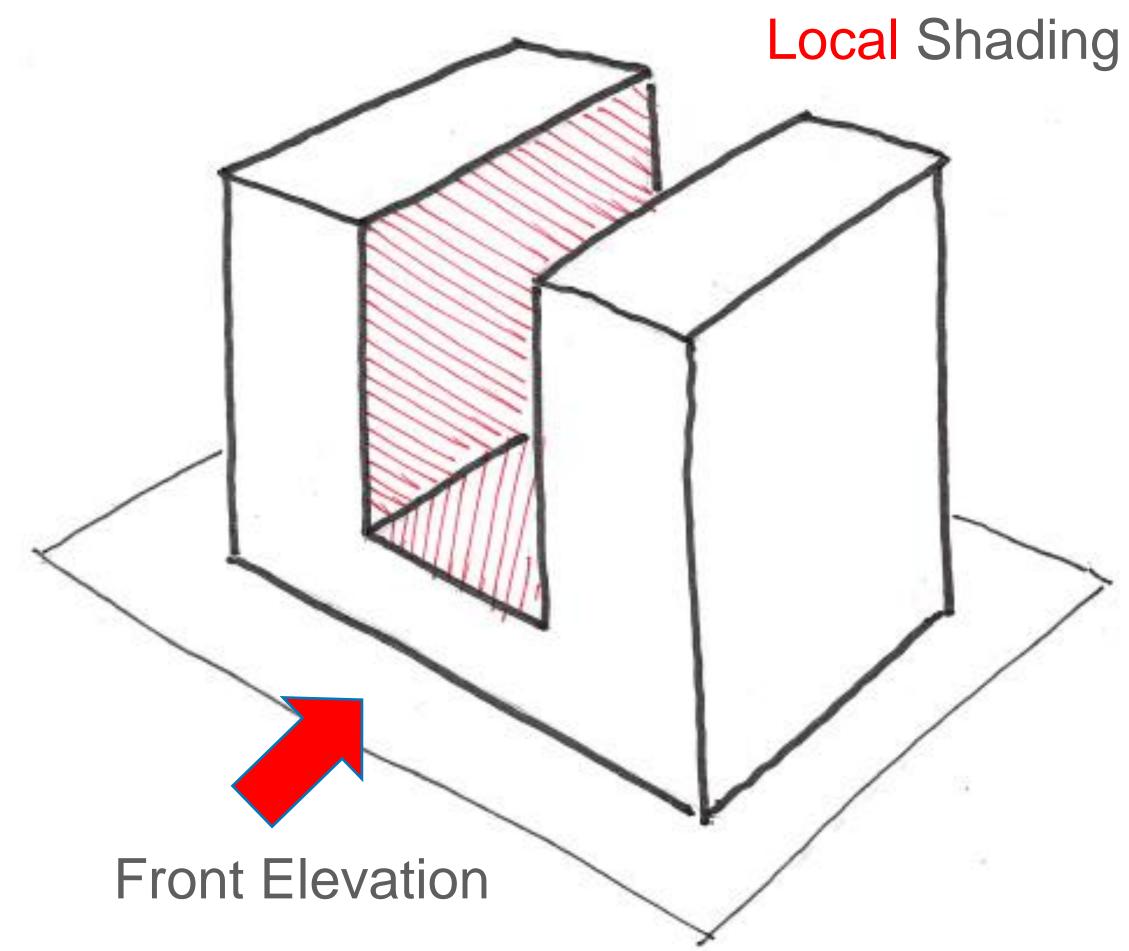
32% to 40%

50% to 60%

I	
No	
1	Base
1	Low-E
2	Non Low-E
4	Non Low-E
5	Non Low-E
6	Non Low-E
7	Low-E + Da

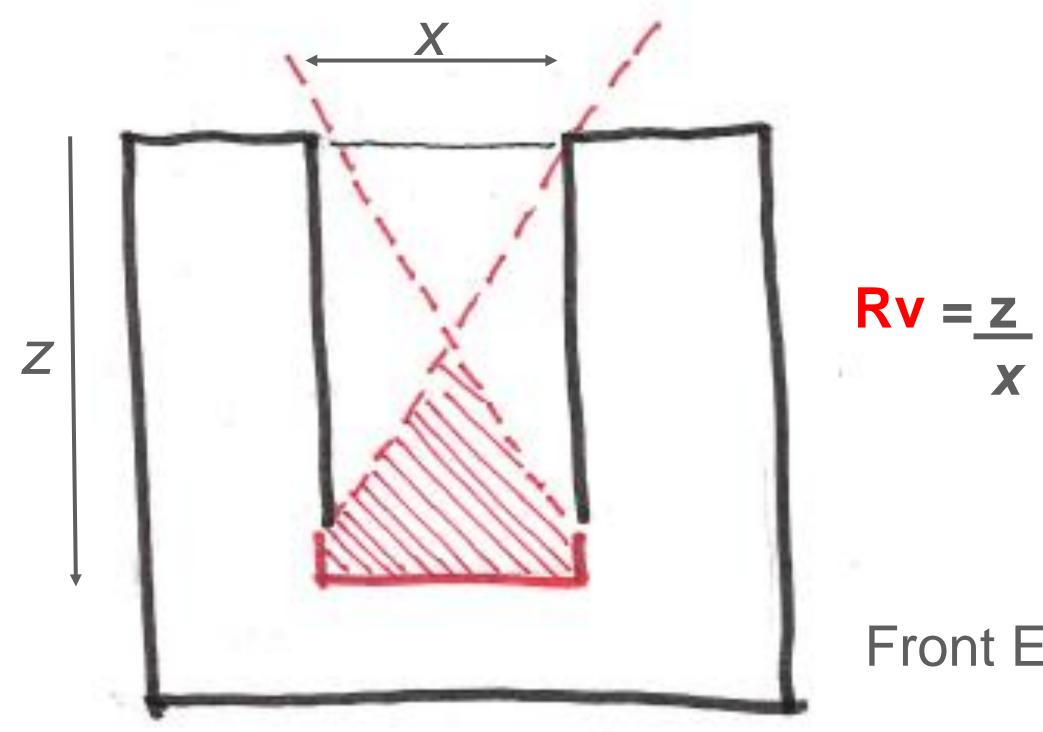
Summary

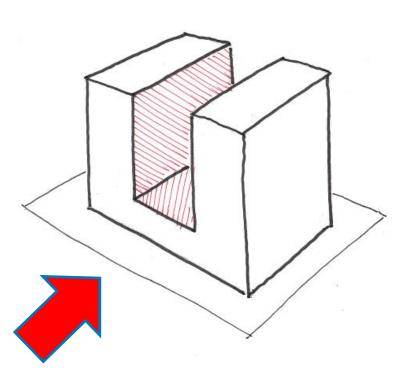
Options	οττν	Percentage	GBI Poir
	51.30 W/m ²	100.00%	
	44.65 W/m²	87.04%	
+ WWR 15%R	44.56 W/m²	86.86%	
+ HD1000	47.98 W/m²	93.53%	
+ HD1000 + VD600	44.37 W/m²	86.49%	
+ Sunscreen 70% Void	44.93 W/m²	87.58%	
ark Grey Façade	52.78 W/m²	102.88%	



Advance OTTV

Case Studies



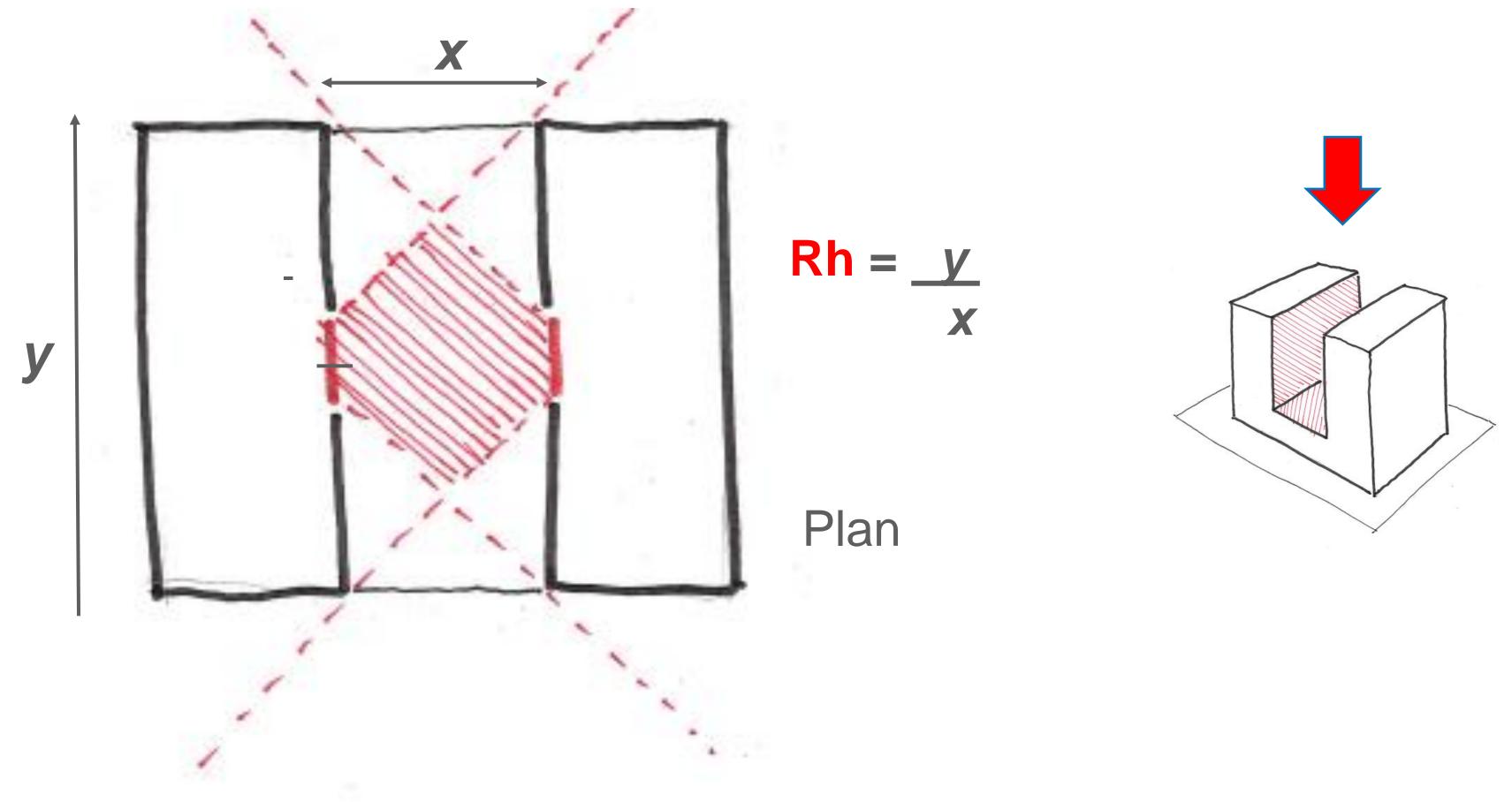

Use of Local Shading, within the same development

Introduce Rv (Vertical) and Rh (Horizontal) to calculation complex external façade and internal courtyard

x = opening width U-shaped building z = distance from the unshaded surface due to vertical depth

Front Elevation

Vertical Shading of U-shaped Building,


 $Rv \ge 3$, Local shading peaked; shading coefficient, SC2 range from 0.35 to 0.5 depending on orientation and facing. To assume all the affected internal façades as wall in the OTTV calculation.

internal façades (both glaze and wall) in the OTTV calculation.

Advance OTTV 1. Self Shade

Rv < 3, No local shading; shading coefficient, SC2 = 1. To include al the

x = opening width of U-shaped building y = distance from the unshaded surface due to horizontal depth

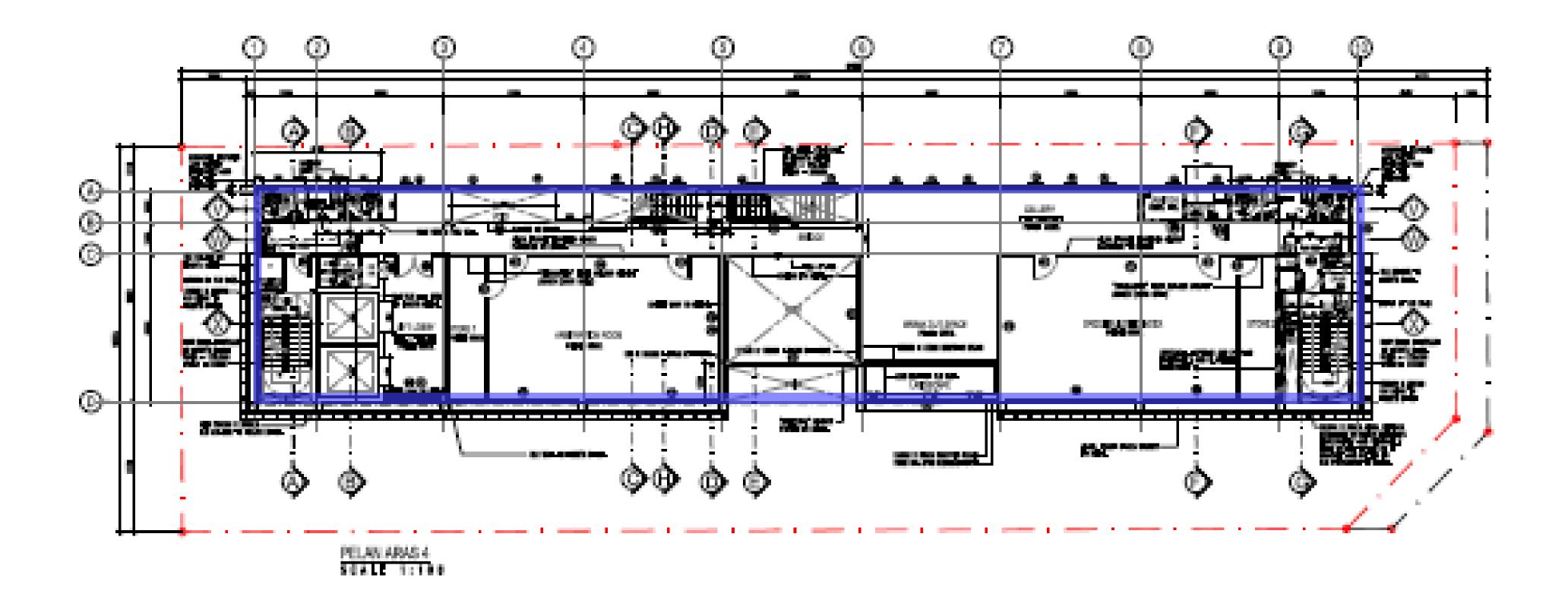
Horizontal Shading of U-shape Building,

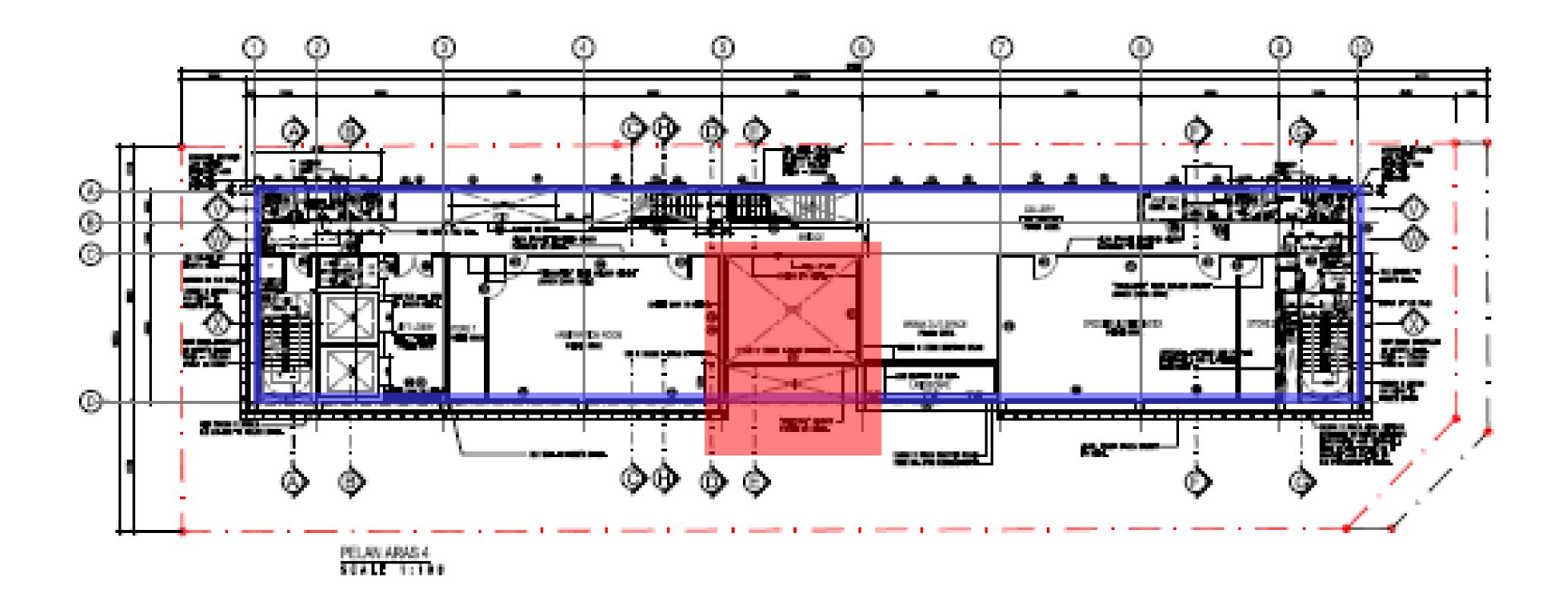

 $Rh \ge 1$, Local shading peaked; shading coefficient, SC2 range from 0.35 to 0.5 depending on orientation and facing. To assume all the affected internal façades as <u>wall</u> in the OTTV calculation.

the internal façades (both glaze and wall) in the OTTV calculation.

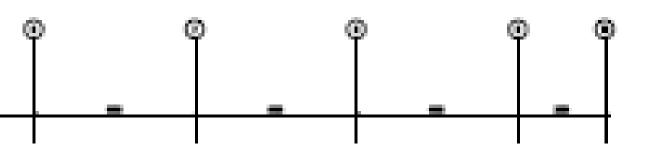
Advance OTTV 1. Self Shade

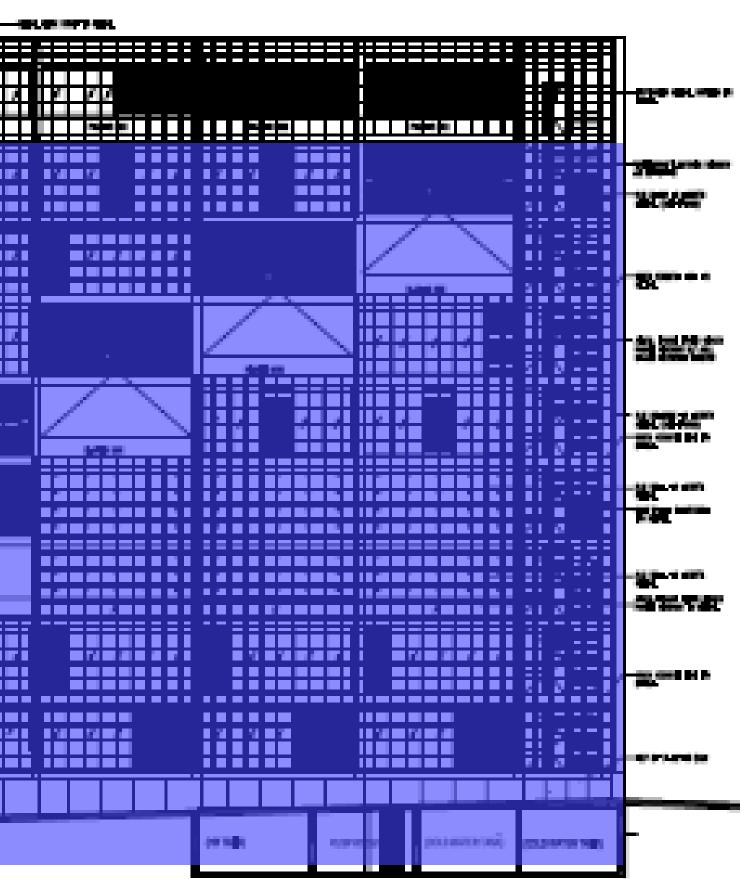
Rh < 1, No local shading; shading coefficient, SC2 = 1. To include all




PAM Center @ KL

FRONT ELEVATION WITH SOREEN.


	-	-	-	-	-				
14 C.C.									
1 04 au	N.Z								
					f [∔∔				
5									
- 27.6									
- and - and -	1								
			3 G F AR	990 997	2 5 74				
- it in									
			2 11 2 7 7						
1 621									
- 8 CH					-				
1 <u>11</u> 1111					/				
- C.L.				<u> </u>					
5 100 KP									
Cia .	ii			545					
an one MOVE				5.5.5					
2 (2)(2)		1.11	11111						
1.1.00.00									

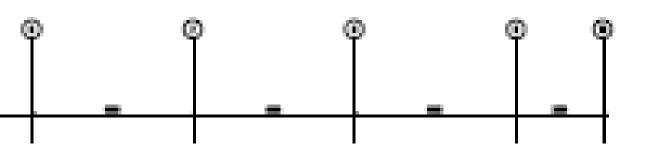

ÎÎ

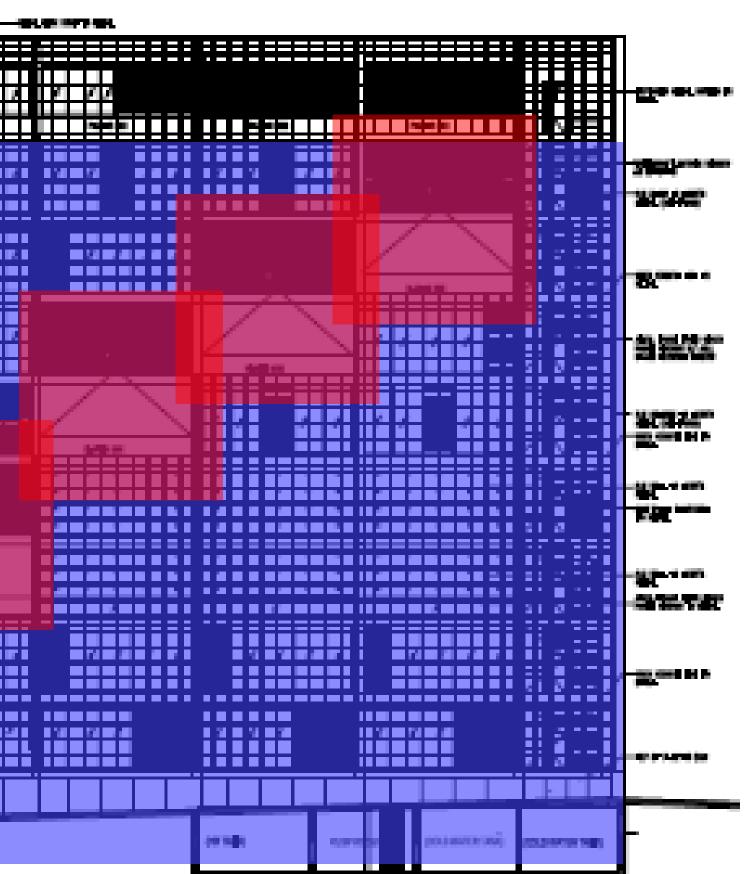
φ

9

φ

FRONT ELEVATION WITH SOREEN.


	 -	-	-			
	1					
5						
- 20						
4						
- 27de	********					
·						
- State State Prints						
	2 7 5 5 5 5	300 000	12 15 74			
- il in						
5	2	3 5 5 6 6				
- 62 da						
8 arr						
tilities a series			/			
			-			
- 6°2						
State State		5415				
		644				
STATE MEANING	-	IN N.N.				
		> <				
200 M						


e e

φ

) @

Q.

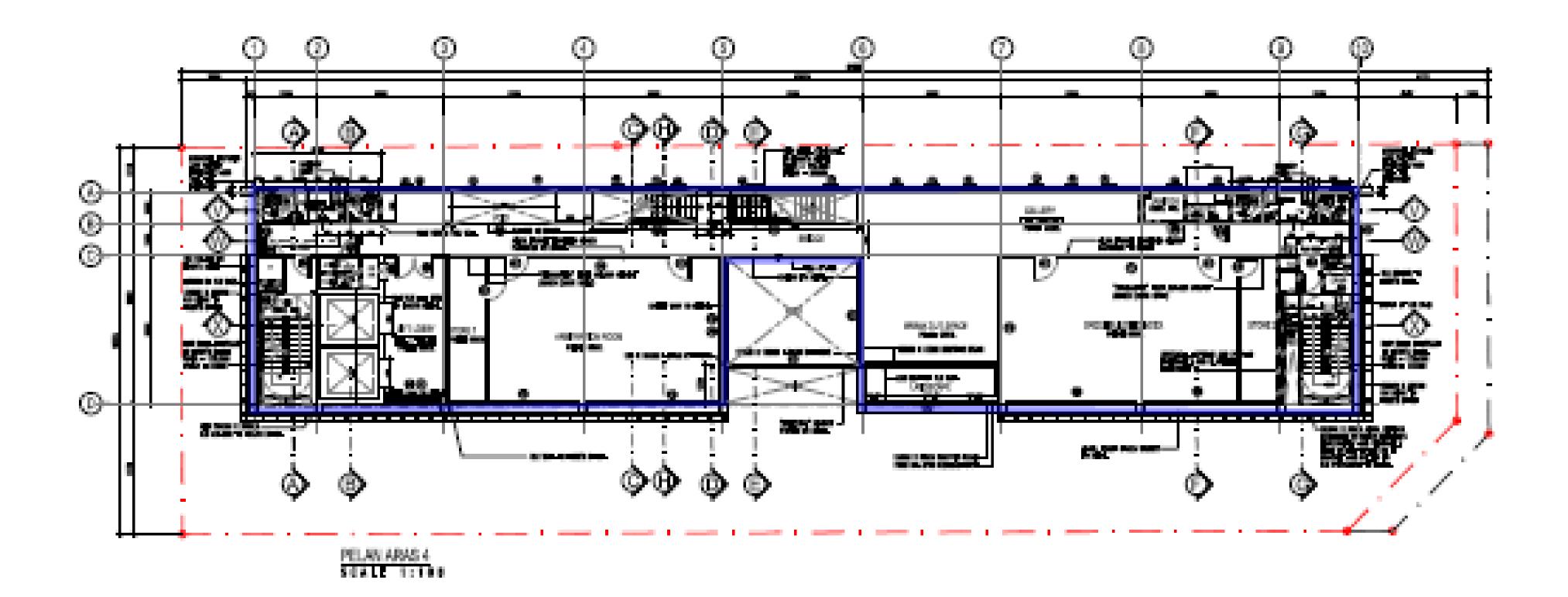
PAM Centre OTTV CALCULATION Design Case

OTTV (w/m²K) =

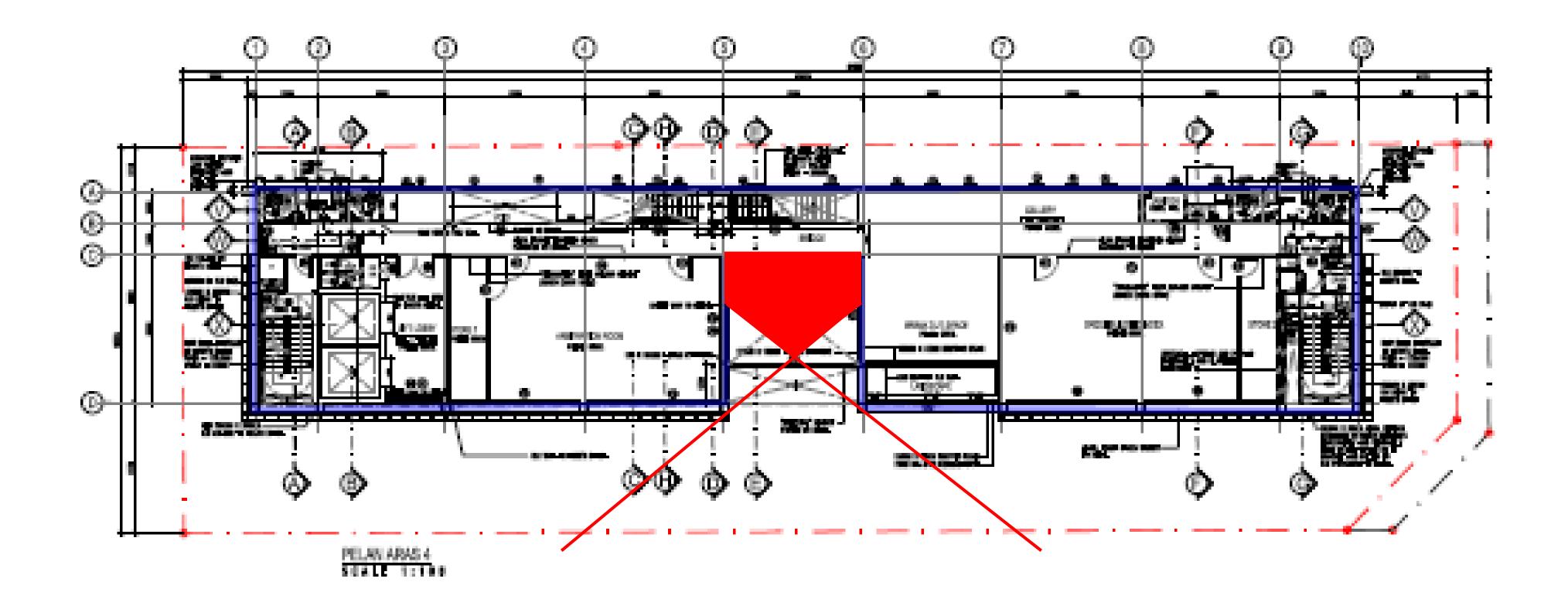
OTTV FORMULA =

0.26

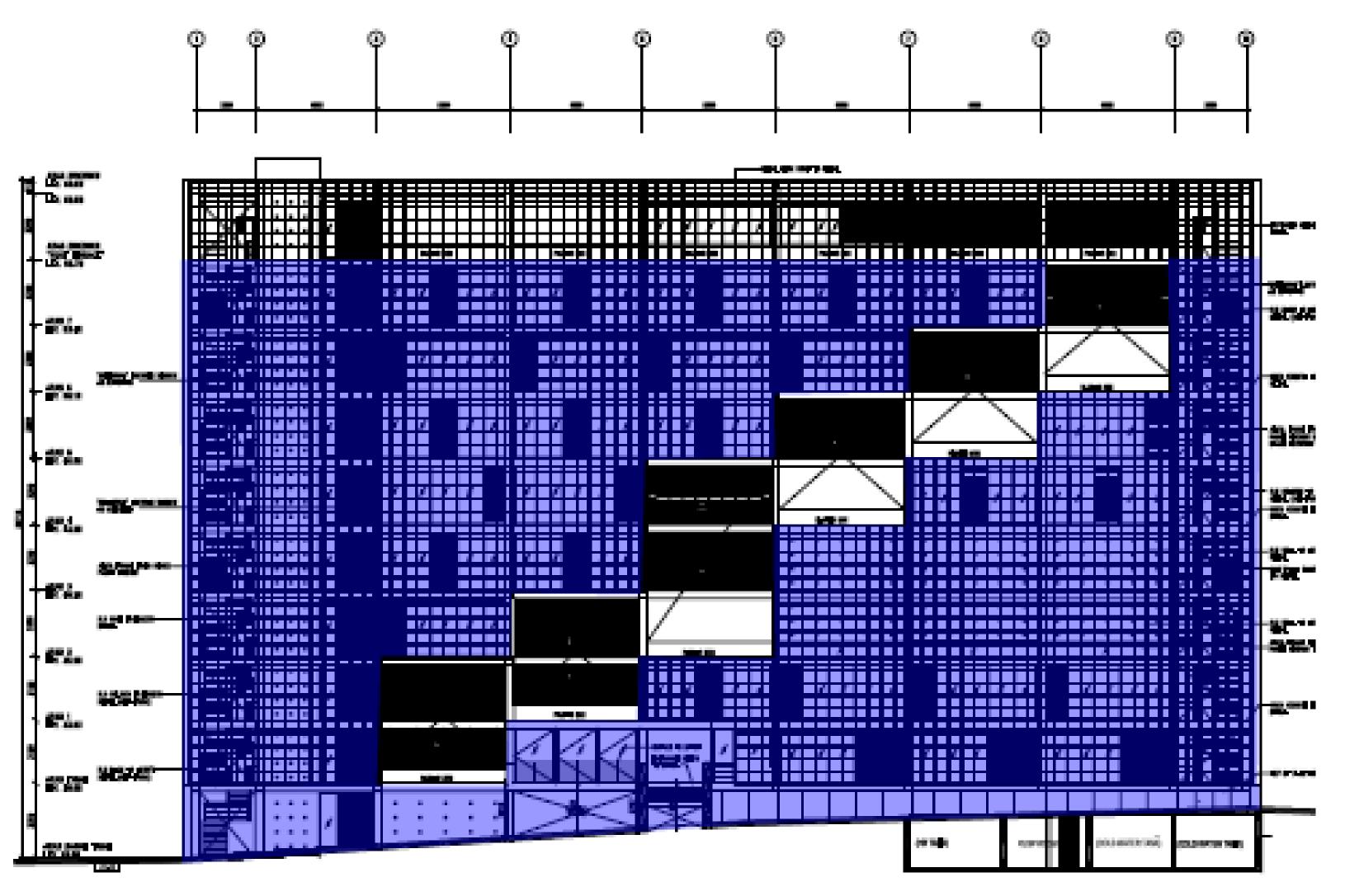
15a(1-WWR)UVwall + 6(WWR)Uvglazing + 194(WWR)(SC)(CF)


OTTV CALCULATION_IPOH KECHIL RESIDENCES RNC DA Heat Conduction Through Windows Solar Heat Gain Through Windows														T				
					waii		tion Inrough Wir 6(WWR)U,		20									
-	Annaland	-		15α(1-WWR)U					194xCFxWWRxSC									
ocation	Area(m*)	Window	Wall	Constant _{wall}	α	(1-WWR)	Uv _{wal}	Constant _{window}	WWR	Uvglashg	Constant _{dualing}	Œ	WWR	Scgaring	Sc _{device}	SC	σπν	OTTV x AREA
ORTH WEST_LG (double 3mm ASG float)	186.54	70.77	115.77	15.00	0.40	0.62	3.04	6.00	0.38	4.00	194.00	0.90	0.38	0.62	1.00	0.62	61.50	11471.81
ORTH WEST_GF (double 3mm ASG float)	37.90	25.28	12.62	15.00	0.40	0.33	3.04	6.00	0.67	4.00	194.00	0.90	0.67	0.62	1.00	0.62	94.29	3573.52
ORTH WEST_GF (double 5mm ASG float w/ shading)	37.90	33.48	4,42	15.00	0.40	0.12	3.04	6.00	0.88	4.00	194.00	0.90	0.88	0.62	0.38	0.24	39.67	2261.39
ORTH WEST_GF (tempered 6mm float)	37.90	17.14	20.76	15.00	0.40	0.55	3.04	6.00	0.45	5.70	194.00	0.90	0.45	0.96	1.00	0.96	101.26	3837.79
ORTH WEST_GF (tempered 6mm float w/shading)	37.90	25.42	12.48	15.00	0.40	0.33	3.04	6.00	0.67	5.70	194.00	0.90	0.67	0.96	0.38	0.36	71.66	2716.10
DRTH WEST_1F (tempered 6mm float)	45.17	34.28	10.89	15.00	0.40	0.24	3.04	6.00	0.76	5.70	194.00	0.90	0.76	0.96	1.00	0.96	157.56	7116.89
DRTH WEST_1F (tempered 6mm float w/shading)	45.17	20.01	25.16	15.00	0.40	0.56	3.04	6.00	0.44	5.70	194.00	0.90	0.44	0.96	0.38	0.36	53.58	2417.98
DRTH WEST_1F (double 5mm ASG float w/ shading)	60.00	56.03	3.97	15.00	0.40	0.07	3.04	6.00	0.93	4.00	194.00	0.90	0.93	0.62	0.38	0.24	62.03	3721.97
RTH WEST_2F (tempered 6mm float)	55.78	18.07	37.71	15.00	0.40	0.68	3.04	6.00	0.32	5.70	194.00	0.90	0.32	0.96	1.00	0.96	77.71	4334.65
DRTH WEST_2F (tempered 6mm float w/shading)	55.78	8.61	47.17	15.00	0.40	0.85	3.04	6.00	0.15	5.70	194.00	0.90	0.15	0.96	0.38	0.36	30.54	1703.53
DRTH WEST_2F (double 3mm ASG float w/ shading)	55.78	21.83	33.95	15.00	0.40	0.61	3.04	6.00	0.39	4.00	194.00	0.90	0.39	0.62	0.38	0.24	36.39	2041.16
DRTH WEST_3F (tempered 6mm float)	55.16	18.07	37.09	15.00	0.40	0.67	3.04	6.00	0.33	5.70	194.00	0.90	0.33	0.96	1.00	0.96	78.38	4323.34
ORTH WEST_3F (tempered 6mm float w/shading)	55.16	13.18	41.98	15.00	0.40	0.76	3.04	6.00	0.24	5.70	194.00	0.90	0.24	0.96	0.38	0.36	37.28	2056.21
RTH WEST_3F (double 3mm ASG float w/ shading)	35.16	30.82	24.34	15.00	0.40	0.44	3.04	6.00	0.56	4.00	194.00	0.90	0.56	0.62	0.38	0.24	44,44	2451.45
DRTH WEST_4F (tempered 6mm float)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04
ORTH WEST 4F (tempered 6mm float w/shading)	45.33	19.53	25.80	15.00	0.40	0.57	3.04	6.00	0.43	5.70	194.00	0.90	0.43	0.96	0.38	0.36	52.56	2382.62
DRTH WEST_4F (double 3mm ASG float w/ shading)	70.00	60.61	9.39	15.00	0.40	0.13	3.04	6.00	0.87	4.00	194.00	0.90	0.87	0.62	0.38	0.24	38.85	4119.15
DRTH WEST_SF (tempered 6mm float)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04
DRTH WEST_SF (tempered 6mm float w/shading)	45.33	20.72	24.61	15.00	0.40	0.54	3.04	6.00	0.46	5.70	194.00	0.90	0.46	0.96	0.38	0.36	54.65	2477.40
	70.00	39.42	10.58	15.00	0.40	0.15	3.04	6.00	0.85	4.00	194.00	0.90	0.85	0.62	0.38	0.24	58.05	4063.35
RTH WEST_SF (double 3mm ASG float w/ shading)																		
ORTH WEST_GF (tempered 6mm float)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70 5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04
RTH WEST_6F (tempered 6mm float w/shading)	45.33	20.72	24.61	15.00	0.40	0.54	3.04	6.00	0.46		194.00	0.90	0.45	0.96	0.38	0.36	54.65	2477.40
RTH WEST_6F (double 3mm ASG float w/ shading)	70.00	39.42	10.58	15.00	0.40	0.15	3.04	6.00	0.85	4.00	194.00	0.90	0.85	0.62	0.38	0.24	58.05	4063.35
DRTH WEST_7F (tempered 6mm float)	39.12	18.07	21.05	15.00	0.40	0.54	3.04	6.00	0.46	5.70	194.00	0.90	0.46	0.96	1.00	0.96	103.04	4080.77
DRTH WEST_7F (tempered 6mm float w/shading)	39.12	25.06	14.06	15.00	0.40	0.36	3.04	6.00	0.64	5.70	194.00	0.90	0.64	0.96	0.38	0.36	69.27	2709.76
DRTH WEST_7F (double 5mm ASG float w/ shading)	80.00	73.16	6.84	15.00	0.40	0.09	3.04	6.00	0.91	4.00	194.00	0.90	0.91	0.62	0.38	0.24	61.13	4890.09
al Area	1461.52	803.91	0.55														66.83	97673.73
DRTH EAST_LG (RC)	28.90	0.00	28.90	15.00	0.40	1.00	3.04	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	18.24	527.14
DRTH EAST_LG (brick)	10.54	0.00	10.54	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	129.39
RTH EAST_GF (RC)	28.74	4.14	24.60	13.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.78	1430.72
IRTH EAST_GF (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	52.17
DRTH EAST_1F (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.78	1430.72
ORTH EAST_1F (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	12.17
ORTH EAST_2F to 7F (RC)	180.83	26.19	154.64	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.95	9082.94
ORTH EAST_2F to 7F (brick)	26.73	0.00	26.73	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	328.14
tal Area	312.98	34.47	0.11														41.48	12983.39
UTH WEST_LG (RC)	28.90	0.00	28.90	15.00	0.40	1.00	3.04	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	18.24	527.14
OUTH WEST_LG (brick)	10.54	0.00	10.54	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	129.39
DUTH WEST_GF (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.68	1284.22
OUTH WEST_GF (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	52.17
UTH WEST_1F (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.68	1284.22
UTH WEST 1F (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	52.17
UTH WEST 2F to 7F (RC)	180.83	26.19	154.64	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.83	8106.19
UTH WEST_2F to 7F (brick)	26.73	0.00	26.73	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	328.14
tal Area	312.98	34.47	0.11		_				-				-		_	_	37.59	11763.65
JTH EAST	1569.49	64.80	1504.69	15.00	0.40	0.96	3.04	6.00	0.04	5.50	194.00	1.13	0.04	0.89	1.00	0.89	26.90	42226.80
tal Area	1569.49	64.80	0.04														26.90	42226.80
													oh Kechil Reside					45.02

$OTTV = 45.02 \text{ w/m}^2$


Advance OTTV 1. Self Shade

164647.57 45.02



FRONT ELEVATION WITH SCREEN

$OTTV = 42.49 \text{ w/m}^2 (-6\%)$

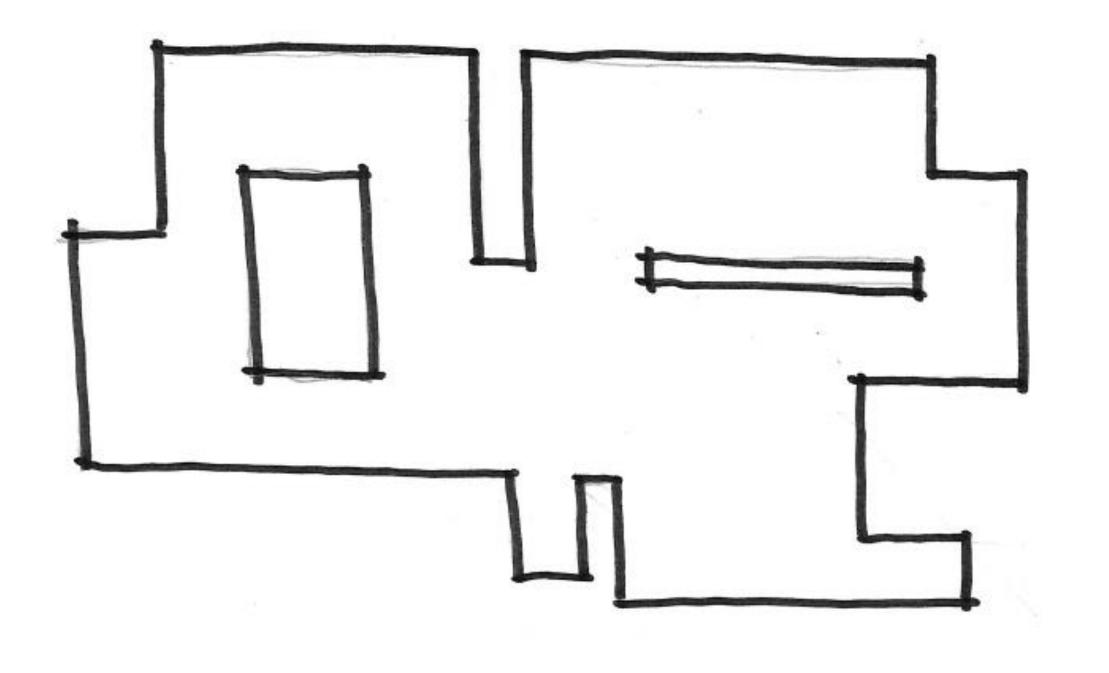
0.24

3969.42 937.65

							ULATION _ IPOH KEC					_	dana di kanada ang di sana	at Gain Through Windows					
				nduction Through	Wall		tion Through Wi	ndows											
	- 1 - 1		[l5α(1-WWR)U _w			6(WWR)U,				194xCFxW		_				
cation	Area(m*)	Window	Wall	Constant _{well}	α	(1-WWR)	Uv _{wall}	Constantwindow	WWR	Uvgering	Constant _{shading}	Œ	WWR	Sugaring	Scanton	SC	OTTV	OTTV x AREA	
DRTH WEST_LG (double 5mm ASG float)	186.54	70.77	115.77	15.00	0.40	0.62	3.04	6.00	0.38	4.00	194.00	0.90	0.38	0.62	1.00	0.62	61.50	11471.81	
DRTH WEST_GF (double 3mm ASG float)	37.90	25.28	12.62	15.00	0.40	0.33	3.04	6.00	0.67	4.00	194.00	0.90	0.67	0.62	1.00	0.62	94.29	3373.52	
DRTH WEST_GF (double 3mm ASG float w/ shading)	37.90	33.48	4.42	15.00	0.40	0.12	3.04	6.00	0.88	4.00	194.00	0.90	0.88	0.62	0.38	0.24	59.67	2261.39	
ORTH WEST_GF (tempered 6mm float)	37.90	17.14	20.76	15.00	0.40	0.55	3.04	6.00	0.45	5.70	194.00	0.90	0.45	0.96	1.00	0.96	101.26	3837.79	
ORTH WEST_GF (tempered 6mm float w/shading)	37.90	25.42	12.48	15.00	0.40	0.33	3.04	6.00	0.67	5.70	194.00	0.90	0.67	0.96	0.38	0.36	71.66	2716.10	
ORTH WEST_1F (tempered 6mm float)	43.17	34.28	10.89	15.00	0.40	0.24	3.04	6.00	0.76	5.70	194.00	0.90	0.76	0.96	1.00	0.96	157.56	7116.89	
DRTH WEST_1F (tempered 6mm float w/shading)	43.17	20.01	25.16	15.00	0.40	0.56	3.04	6.00	0.44	5.70	194.00	0.90	0.44	0.96	0.38	0.36	53.58	2417.93	
ORTH WEST_1F (double 3mm ASG float w/ shading)	60.00	56.03	3.97	15.00	0.40	0.07	3.04	6.00	0.93	4.00	194.00	0.90	0.93	0.62	0.38	0.24	62.03	3721.97	
DRTH WEST_2F (tempered 6mm flost)	55.78	18.07	37.71	15.00	0.40	0.68	3.04	6.00	0.32	5.70	194.00	0.90	0.32	0.96	1.00	0.96	77.71	4334.65	
ORTH WEST_2F (tempered 6mm float w/shading)	35.78	8.61	47.17	15.00	0.40	0.85	3.04	6.00	0.15	5.70	194.00	0.90	0.15	0.96	0.38	0.36	30.54	1703.53	
ORTH WEST_2F (double 3mm ASG float w/ shading)	35.78	21.83	33.95	15.00	0.40	0.61	3.04	6.00	0.39	4.00	194.00	0.90	0.39	0.62	0.38	0.24	36.59	2041.16	
DRTH WEST_3F (tempered 6mm flost)	55.16	18.07	37.09	15.00	0.40	0.67	3.04	6.00	0.33	5.70	194.00	0.90	0.33	0.96	1.00	0.96	78.38	4323.34	
DRTH WEST_3F (tempered 6mm float w/shading)	55.16	13.18	41.98	15.00	0.40	0.76	3.04	6.00	0.24	5.70	194.00	0.90	0.24	0.96	0.38	0.36	37.28	2056.21	
ORTH WEST 3F (double 5mm ASG float w/ shading)	35.16	30.82	24.34	15.00	0.40	0.44	3.04	6.00	0.56	4.00	194.00	0.90	0.56	0.62	0.38	0.24	44.44	2451.45	
DRTH WEST_4F (tempered 6mm floet)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04	
DRTH WEST 4F (tempered 6mm float w/shading)	45.33	19.53	25.80	15.00	0.40	0.57	3.04	6.00	0.43	5.70	194.00	0.90	0.43	0.96	0.38	0.36	52.56	2382.62	
ORTH WEST_4F (double 5mm ASG float w/ shading)	70.00	60.61	9.39	15.00	0.40	0.13	3.04	6.00	0.87	4.00	194.00	0.90	0.87	0.62	0.38	0.24	58.85	4119.15	
DRTH WEST_DF (tempered 6mm float)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04	
ORTH WEST_SF (tempered 6mm float w/shading)	45.33	20.72	24.61	13.00	0.40	0.54	3.04	6.00	0.46	5.70	194.00	0.90	0.46	0.96	0.38	0.36	54.65	2477.40	
DRTH WEST_3F (double 3mm ASG float w/ shading)	70.00	39.42	10.58	15.00	0.40	0.15	3.04	6.00	0.85	4.00	194.00	0.90	0.85	0.62	0.38	0.24	38.05	4063.30	
DRTH WEST_6F (tempered 6mm float)	45.33	18.07	27.26	15.00	0.40	0.60	3.04	6.00	0.40	5.70	194.00	0.90	0.40	0.96	1.00	0.96	91.42	4144.04	
DRTH WEST_6F (tempered 6mm float w/shading)	45.33	20.72	24.61	15.00	0.40	0.54	3.04	6.00	0.46	5.70	194.00	0.90	0.46	0.96	0.38	0.36	54.65	2477.40	
DRTH WEST_6F (double 3mm ASG float w/ shading)	70.00	59.42	10.58	15.00	0.40	0.15	3.04	6.00	0.85	4.00	194.00	0.90	0.85	0.62	0.38	0.24	58.05	4063.35	
ORTH WEST_0F (double Smith As a hoat wy shading) ORTH WEST_7F (tempered 6mm float)	39.12	18.07	21.05	15.00	0.40	0.54	3.04	6.00	0.46	5.70	194.00	0.90	0.45	0.96	1.00	0.96	103.04	4083.33	
ORTH WEST_7F (tempered 6mm float w/shading)	39.12	25.06	14.05	15.00	0.40	0.36	3.04	6.00	0.64	5.70	194.00	0.90	0.64	0.96	0.38	0.36	69.27	2709.76	
ORTH WEST_7F (double 3mm ASG float w/ shading)	80.00	73.16	6.84	15.00	0.40	0.09	3.04	6.00	0.91	4.00	194.00	0.90	0.91	0.56	0.38	0.24	61.13	4890.09	
otal Area	1461.52	803.91	0.55	10.00	0.40	0.05	3.04	0.00	0.51	4.00	124.00	0.50	0.51	0.62	0.30	10.24	66.83	97673.73	
	1401.02	000.01	0.00														00.00	2/0/3./3	
DRTH EAST_LG (RC)	28.90	0.00	28.90	15.00	0.40	1.00	3.04	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	18.24	527.14	
DRTH EAST_LG (brick)	10.54	0.00	10.54	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	129.39	
DRTH EAST_GF (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.78	1430.72	
ORTH EAST_GF (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	52.17	
DRTH EAST_1F (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.78	1430.72	
DRTH EAST_1F (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	52.17	
DRTH EAST_2F to 7F (RC)	180.83	26.19	154.64	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	1.09	0.14	0.96	1.00	0.96	49.95	9082.94	
ORTH EAST_2F to 7F (brick)	26.73	0.00	26.73	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	328.14	
DRTH EAST U CRATER (RC)	21.99	0.00	21.99	15.00	0.40	1.00	3.40	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	20.40	448.60	
DRTH EAST U CRATER (brick)	155.21	0.00	155.21	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	1.09	0.00	1.00	1.00	1.00	12.28	1905.36	
tal Area	490.18	34.47	0.07			2.00	2.02	0.00	0.00		1.00	2.00	0.000			2.00	31.29	15337.34	
		-																	
NUTH WEST_LG (RC)	28.90	0.00	28.90	15.00	0.40	1.00	3.04	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	18.24	527.14	
DUTH WEST_LG (brick)	10.54	0.00	10.54	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	129.39	
DUTH WEST_GF (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.68	1284.22	
DUTH WEST_GF (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	52.17	
DUTH WEST_1F (RC)	28.74	4.14	24.60	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.68	1284.22	
OUTH WEST_1F (brick)	4.25	0.00	4.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	52.17	
OUTH WEST_2F to 7F (RC)	180.83	26.19	154.64	15.00	0.40	0.86	3.04	6.00	0.14	5.70	194.00	0.90	0.14	0.96	1.00	0.96	44.83	8106.19	
UTH WEST_2F to 7F (brick)	26.73	0.00	26.73	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	328 14	
OUTH WEST U CRATER (brick)	135.25	0.00	135.25	15.00	0.40	1.00	2.05	6.00	0.00	5.70	194.00	0.90	0.00	1.00	1.00	1.00	12.28	1660.33	
tal Area	448.23	34.47	0.08				2.00	Selectory	0.00	2010/00	204.00	6.20		2.00		2.00	29.95	13423.98	
	T Tale and																		
IUTH EAST	1569.49	64.80	1504.69	15.00	0.40	0.96	3.04	6.00	0.04	5.50	194.00	1.13	0.04	0.89	1.00	0.89	26.90	42226.80	
tal Area	1569.49	64.80	0.04														26.90	42226.80	
												OTTV for In	oh Kechil Reside	nces				42,49	

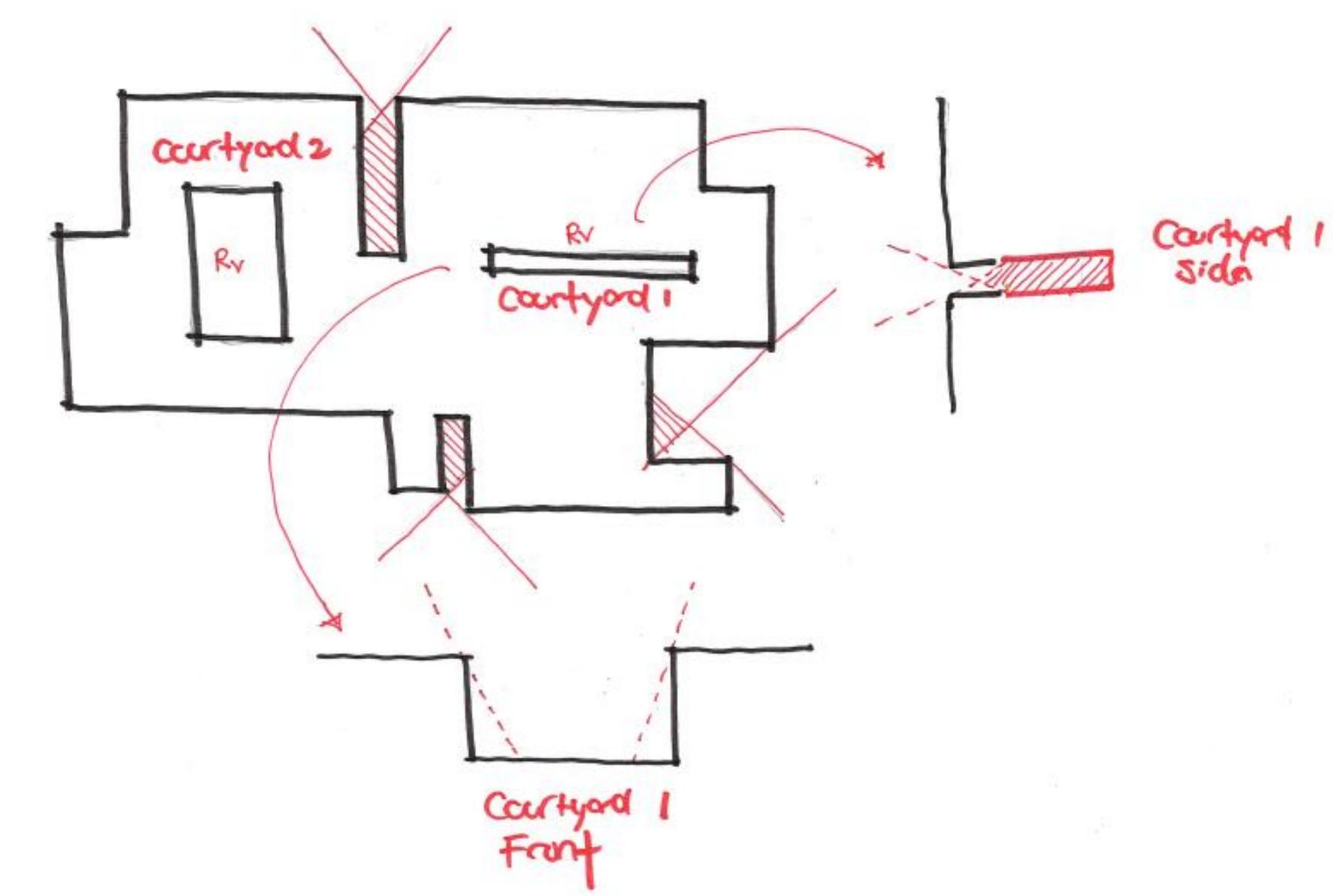
OTTV FORMULA =

Proposed OTTV (w/m²K) =

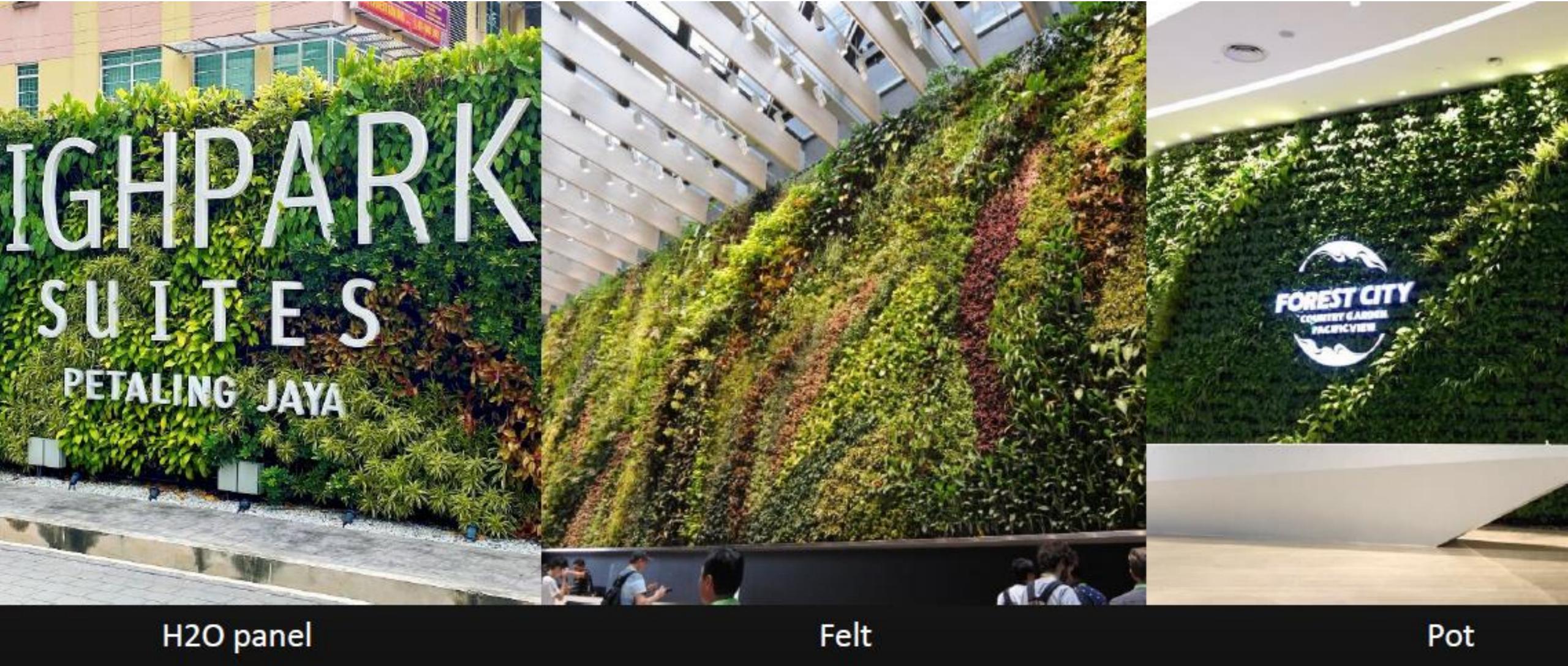

15a(1-WWR)UVwall + 6(WWR)Uvglazing + 194(WWR)(SC)(CF)

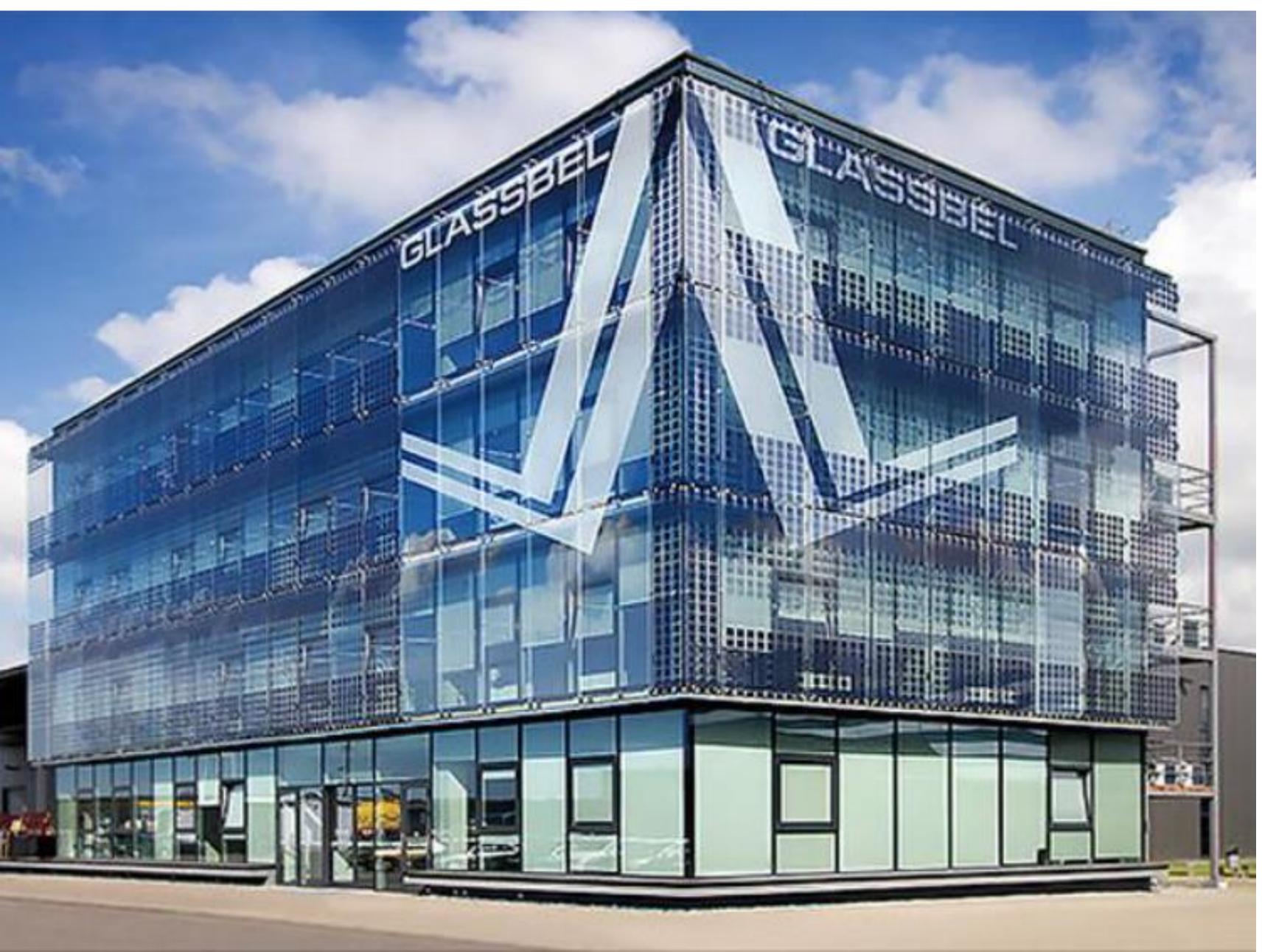
PAM Centre OTTV CALCULATION Design Case

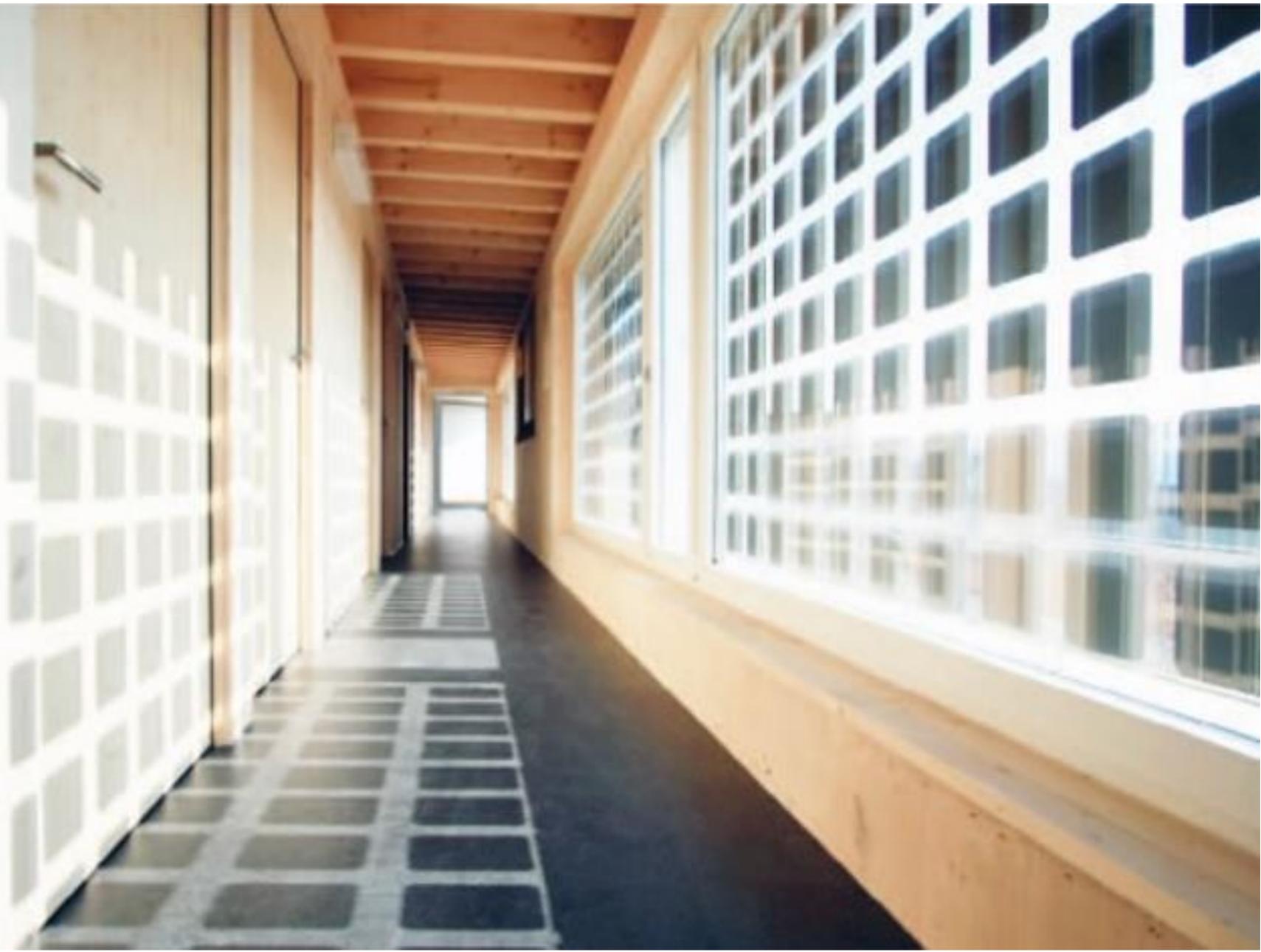
Advance OTTV f Shade


168661.85 42,49

Open vs Close Loop for OTTV Calculation



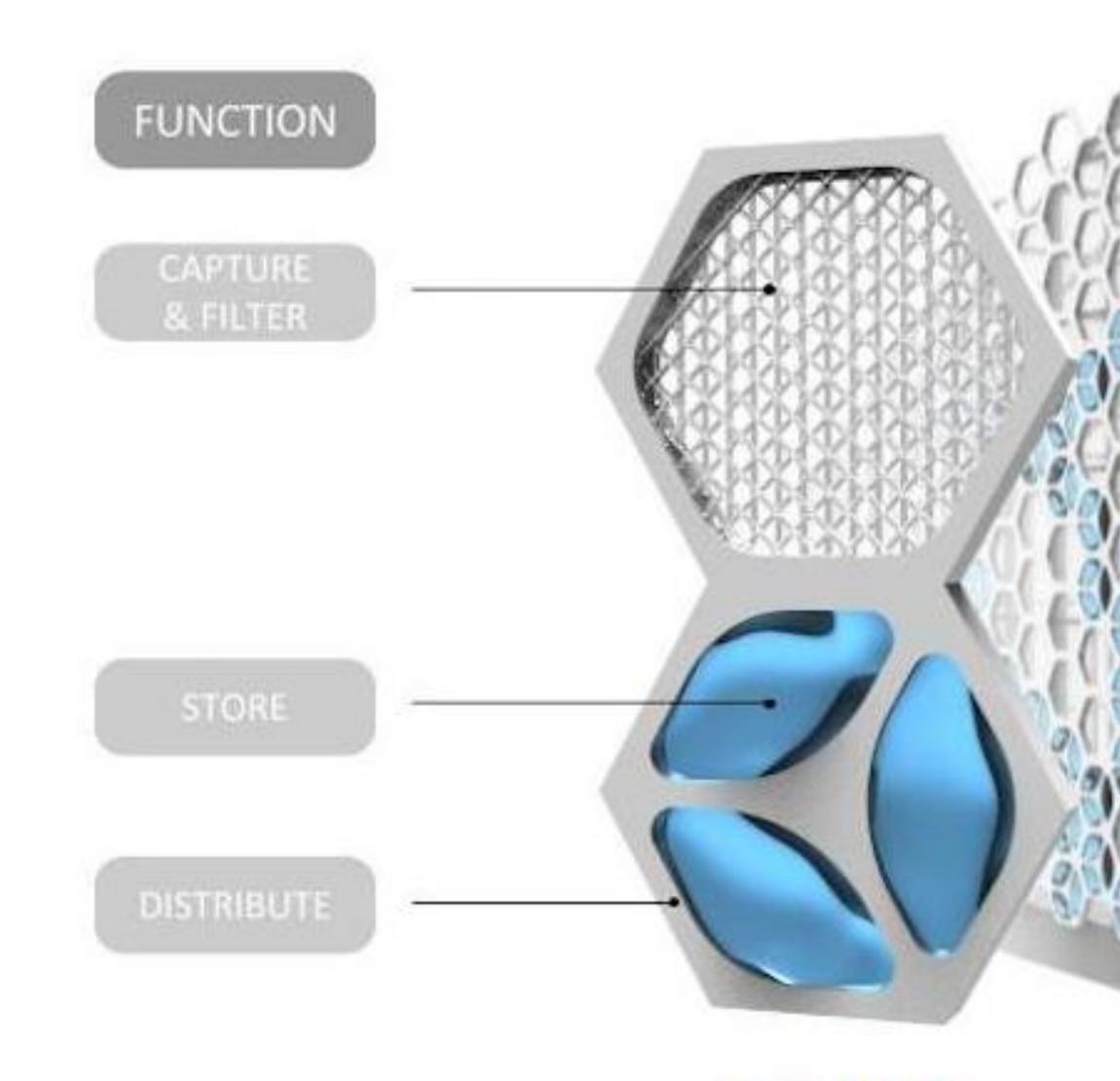




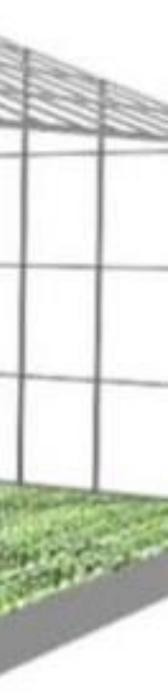
Advance OTTV 3. BIPV

Glassbel @ Klaipeda, Lithuania

Advance OTTV 3. BIPV


Glassbel @ Klaipeda, Lithuania

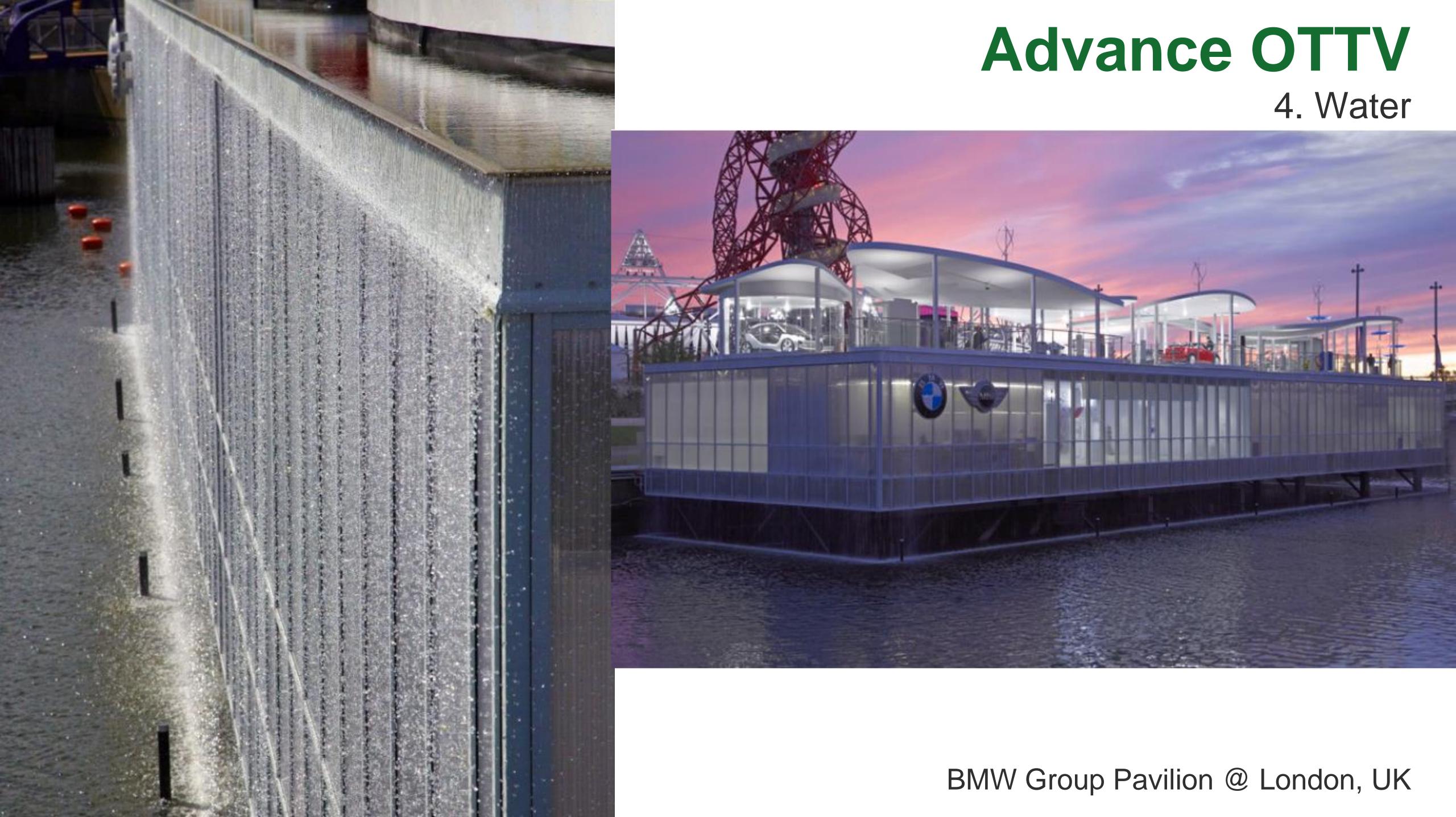
Advance OTTV 4. Water



AquaWeb

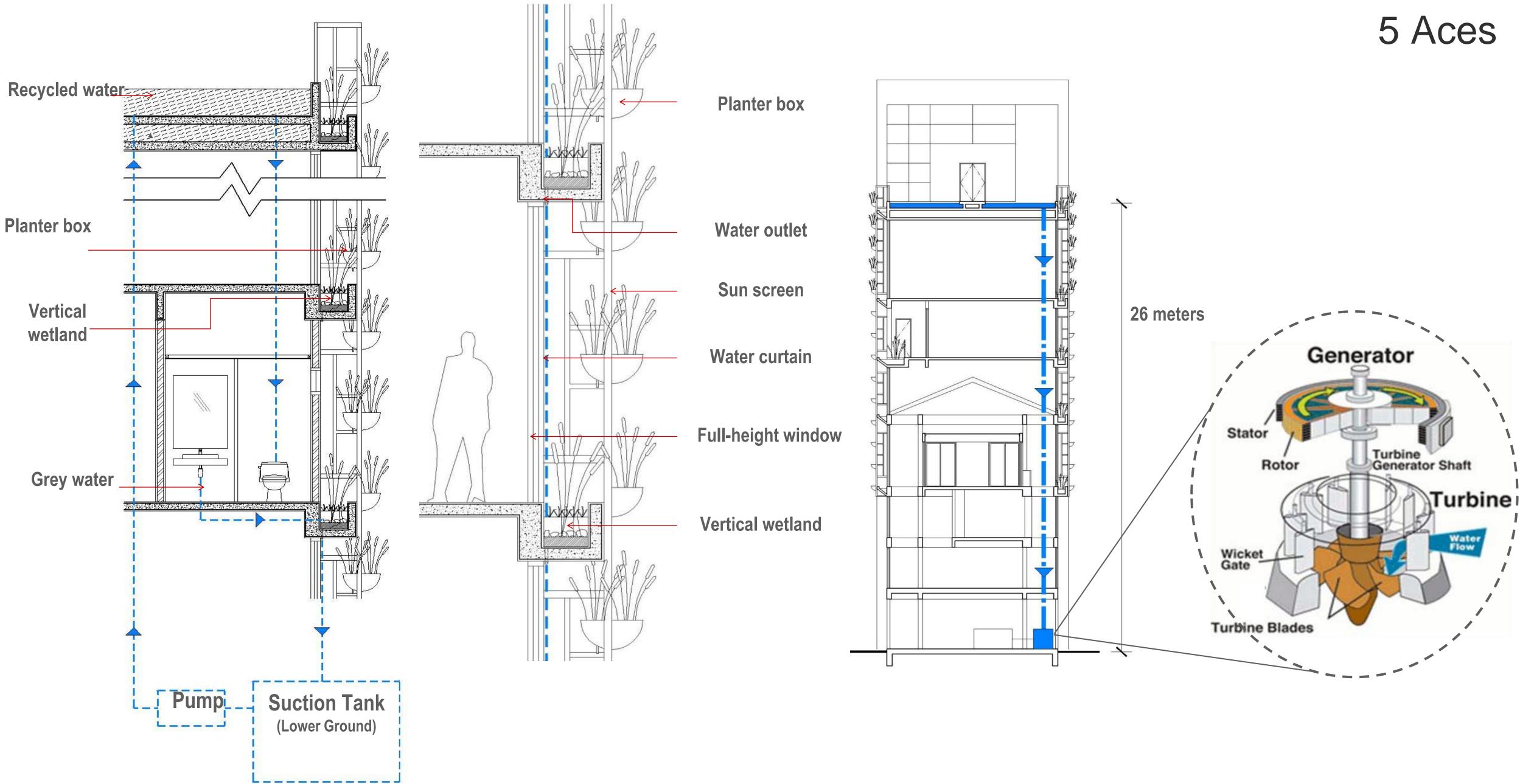
Advance OTTV 4. Water

Advance OTTV



Advance OTTV 4. Water

BMW Group Pavilion @ London, UK



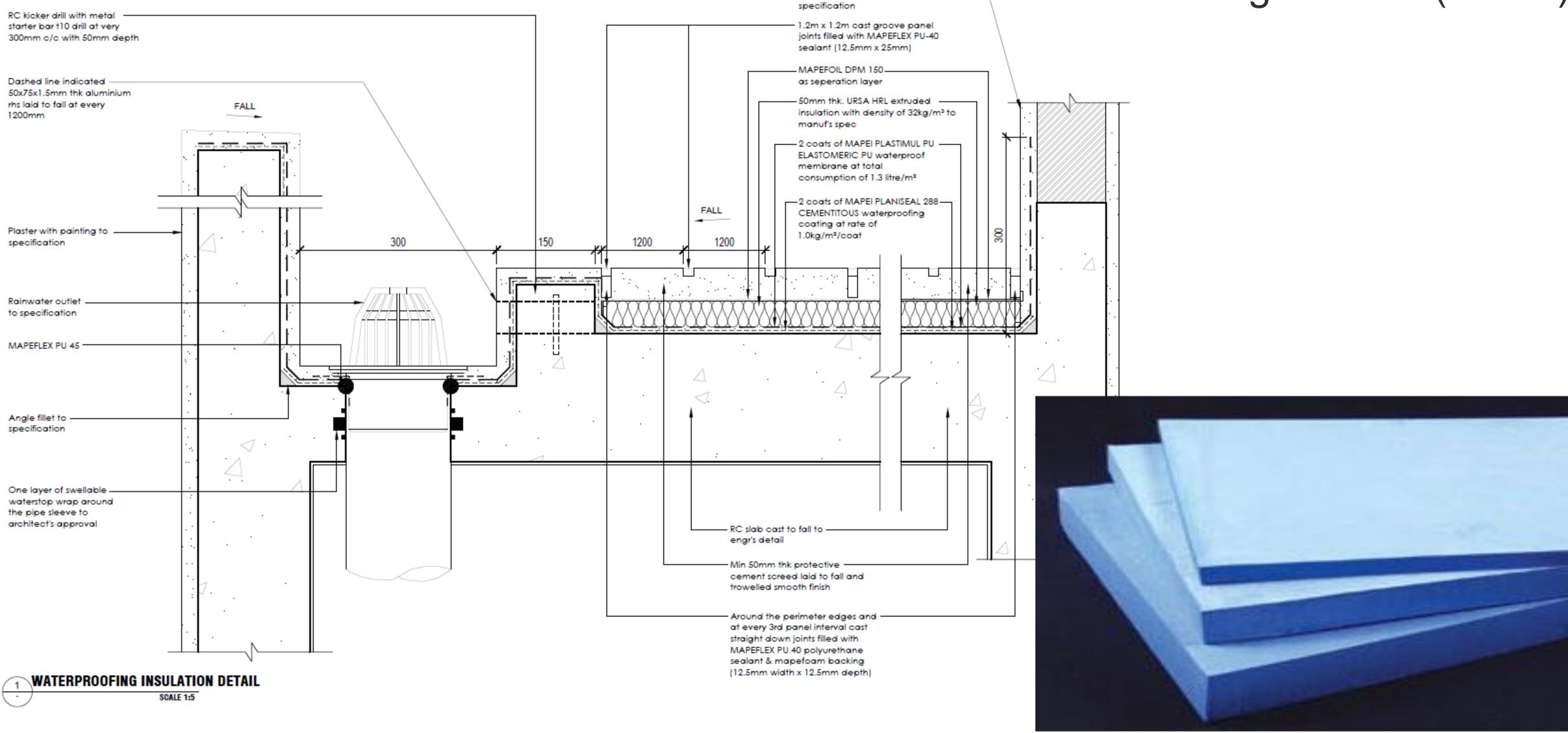
Advance OTTV 5 Aces

Advance OTTV

Roof Types & Suitability

TYPE OF ROOF INSUATION

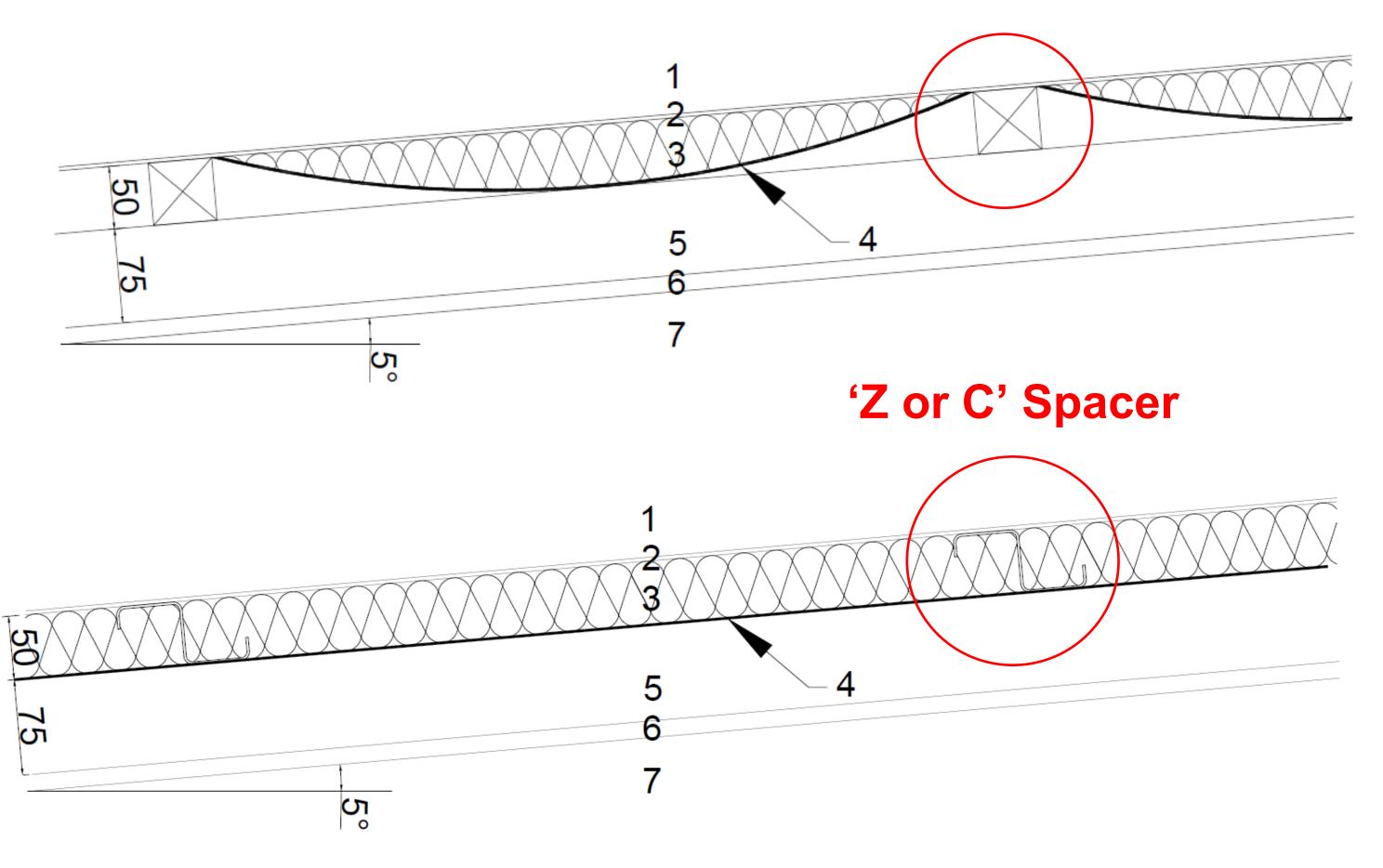
Double Roof Lift Core / Staircase


Double Roof Secondary Roof. Top finish with glass/canvas. Common material of canvas are PVC, acrylic and polyethylene

Insulation Turf as insulation

Roof Insulation

Insulation Water Feature/Pool as insulation Double Roof **Raise Deck** Insulation **Rigid Form**



Plaster with painting to

Roof Insulation 1. Rigid Foam (Board)

Roof Insulation 2. Bulk

MS 2095:2014 section 3.5 and section 3.6

Reflective surface within an enclosed air space

Reflective surface laminated onto woven, foam, etc which has a resisted conductive element

Roof Insulation 3. Reflective / Radiant Barrier

Radiant Barrier

Reflective Insulation

Have an emittance rating < 0.05 (Reflect > 95% of heat radiation)

Note: Emittance is a ratio of energy or heat that is intercepted by the insulation and radiated outwards.

Reflective Insulation and Radiant barriers are **not** insulators and therefore have low R-value.

When they are used within enclosed air spaces as part of an insulating system, it reduces the heat emitted through the roof and enable the insulation to perform near its intended R-value.

Roof Insulation 3. Reflective / Radiant Barrier

In order to perform properly, reflective insulation and radiant barriers must be installed facing (single or double sided) an enclosed air space of appropriate dimensions to work as part of an insulating system.

Roof attics are not considered as appropriate air spaces because of the convection air movement within them.

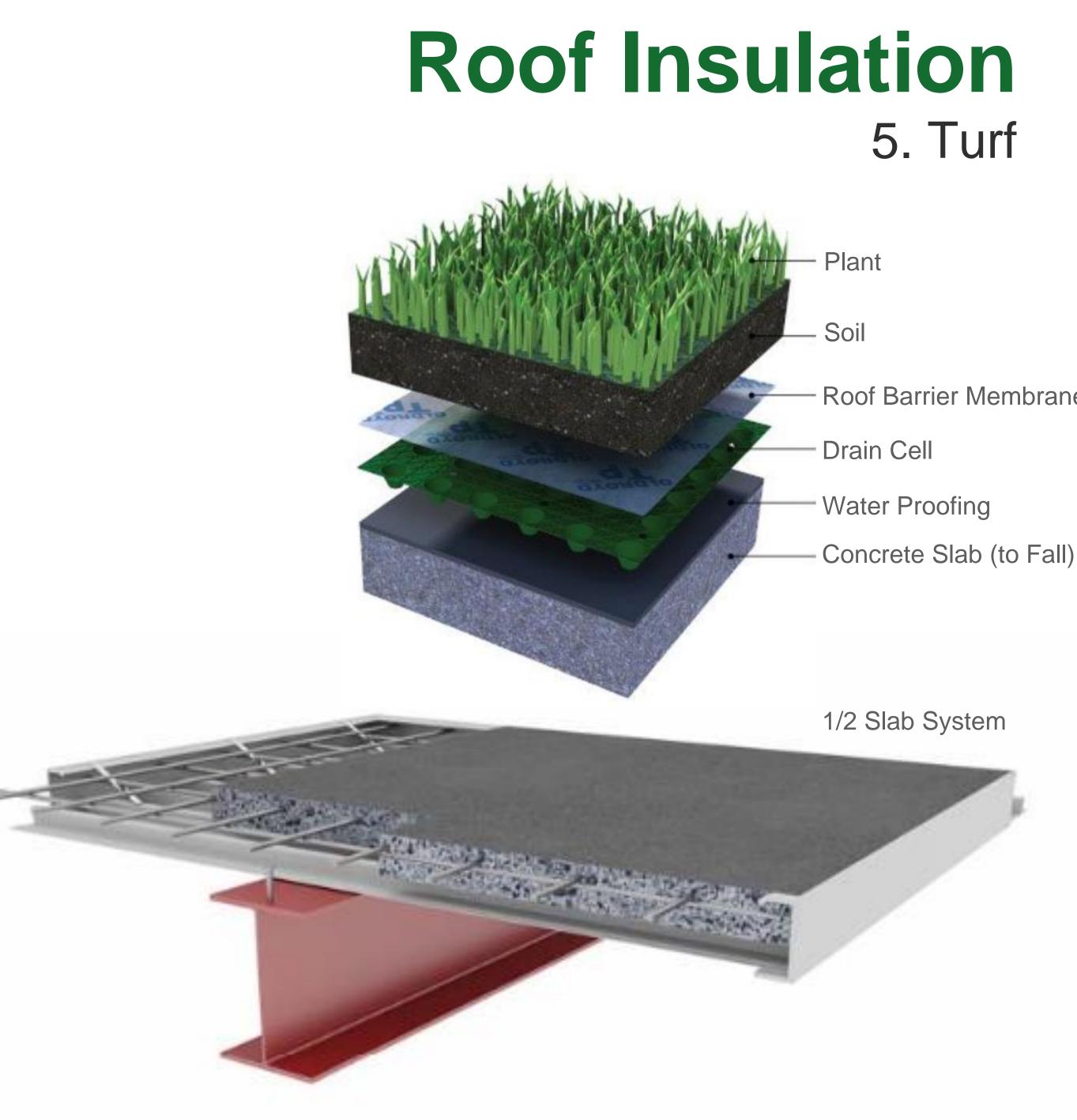
When placed directly against another material, these barriers can transfer heat by conduction, instead of blocking or reflecting it.

Roof Insulation 3. Reflective / Radiant Barrier

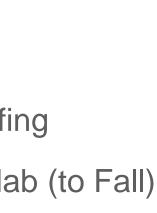
Caution

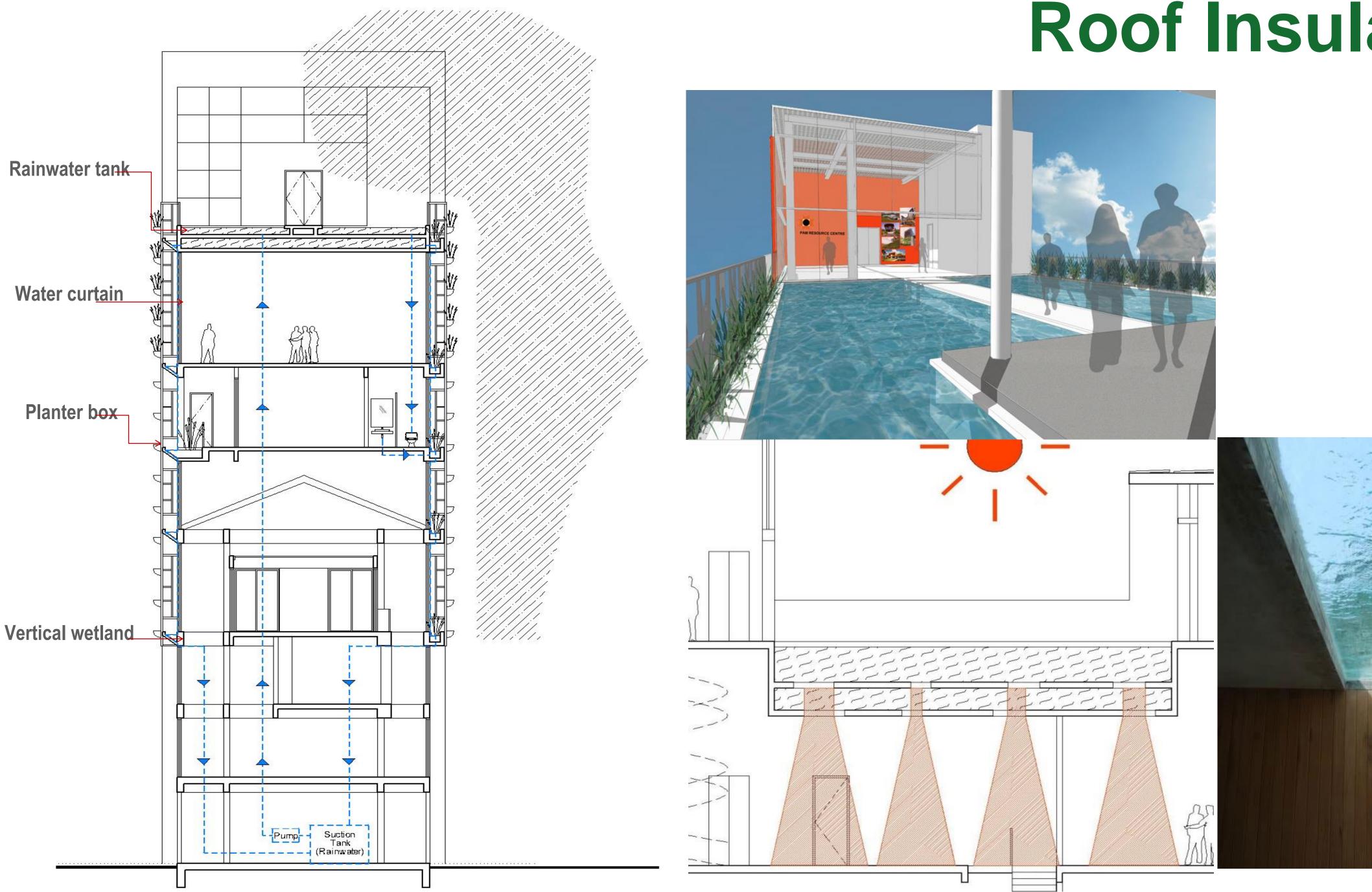
Can applied to both heavyweight and lightweight roofs. Can fill even the smallest of cavities, thus creating an effective insulation.

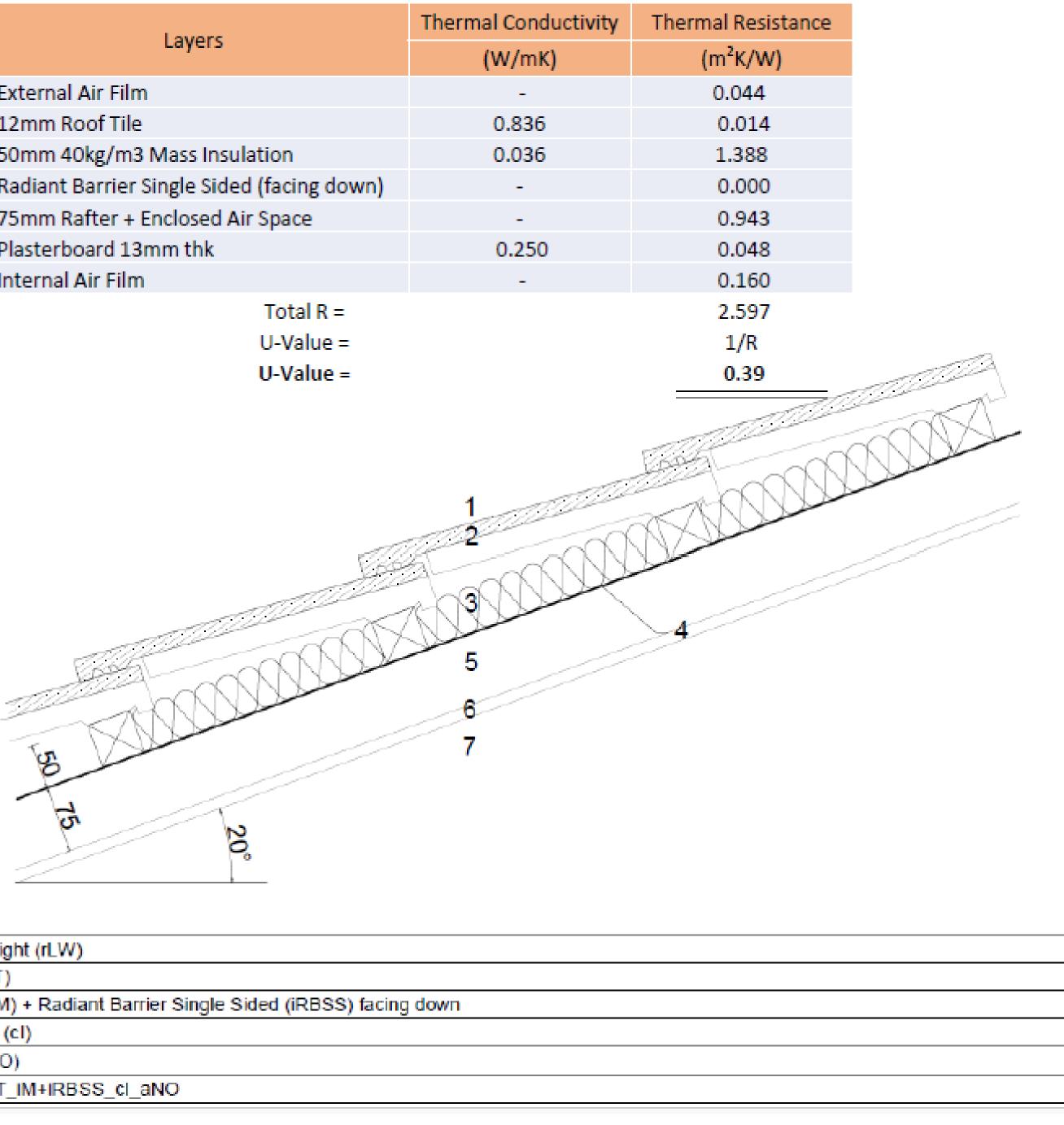
Ability to conform to irregular roof shapes.


Caution Difficult to maintain the consistent thickness hence affect the R-value property.

Roof Insulation 4. Spray

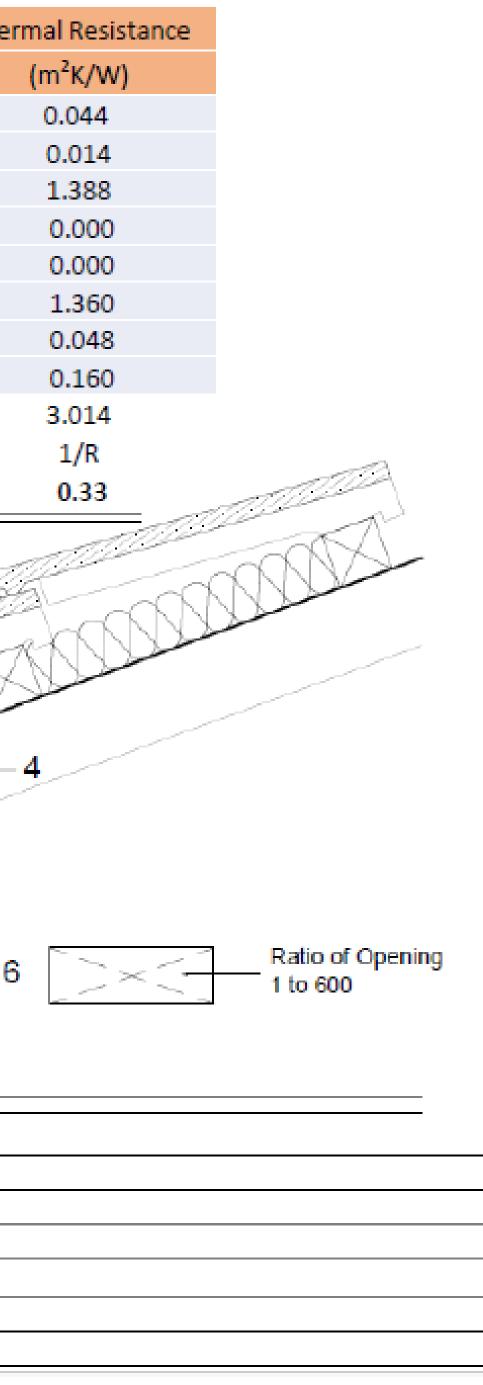






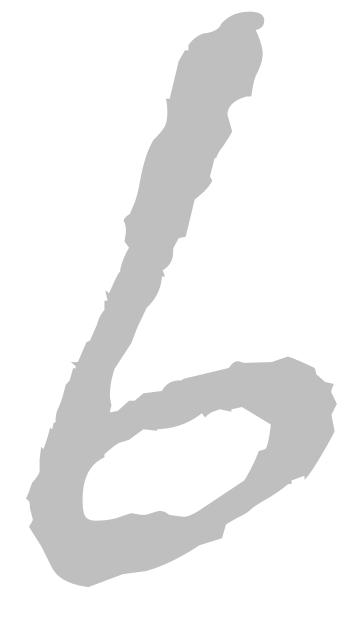
Roof Insulation 6. Water

EXAMPLE 8	Layers	Thermal Conductivity (W/mK)	Therr
	1 External Air Film	-	
	2 12mm Roof Tile	0.836	
	3 50mm 40kg/m3 Mass Insulation	0.036	
	4 Radiant Barrier Single Sided (facing down)	-	
	5 75mm Rafter + Enclosed Air Space	-	
	6 Plasterboard 13mm thk	0.250	
	7 Internal Air Film	-	
	Total R = U-Value = U-Value =		


Roof	Lightweight (rLW)
Material	Tile (mT)
Insulation	Mass (iM) + Radiant Barrier Single Sided (iRBSS) facing down
Ceiling	Inclined (cl)
Attic	No (aNO)
Code	rLW_mT_IM+IRBSS_cl_aNO

EXAMPLE 11	Layers	Thermal Conductivity	Thermal Resistance
	cuyers	(W/mK)	(m²K/W)
	1 External Air Film	-	0.044
	2 12mm Roof Tile	0.836	0.014
	3 50mm 40kg/m3 Mass Insulation	0.036	1.388
	4 Radiant Barrier Single Sided (facing down)	-	0.000
	5 75mm Rafter	-	0.000
	6 Attic Space (unventilated)	-	1.090
	7 Plasterboard 13mm thk	0.250	0.048
	8 Internal Air Film	-	0.160
	Total R =		2.744
	U-Value =		1/R
		1 0000	4
			4
	ghtweight (rLW)		4
aterial T	lle (mT)	78	4
aterial T sulation M	lle (mT) ass (iM) + Radiant Barrier Single Sided (iRBSS) facing	78	
laterial T sulation M eiling H	lle (mT)	78	4

EXAMPLE 12		Thermal Conductivity	Ther
	Layers	· · · · · · · · · · · · · · · · · · ·	mer
		(W/mK)	
	1 External Air Film	-	
	2 12mm Roof Tile	0.836	
	3 50mm 40kg/m3 Mass Insulation	0.036	
	4 Radiant Barrier Single Sided (facing down) 5 75mm Rafter	-	
	6 Attic Space (ventilated)	-	
	7 Plasterboard 13mm thk	0.250	
	8 Internal Air Film	-	
	Total R = U-Value =		
	U-Value =		
	o func		_
			-11
		_	Lang.
		1	
			RY
	ELG.	A TOON	22
		NO STA	
		5	
	The second se		
	Ton Valla		c
	-		6
	3 2		
	Po		
		7	
		8	
	ightweight (rLW)		
	ile (mT) Isoa (iNt) - Dadiast Davis Ciasta Cidad (iDDCC) (avis		
	lass (iM) + Radiant Barrier Single Sided (iRBSS) facing orizontal (cH)	aown	
_	orizontal (cH)		
	entilated (aV) _W_mT_IM + IRBSS_cH_aV		



Energy Efficiency & Conservation Act

ENERGY EFFICIENCY AND CONSERVATION BILL 2023

ARRANGEMENT OF CLAUSES

Part I

PRELIMINARY

Clause

- 1. Short title and commencement
- 2. Interpretation
- 3. Application

PART II

FUNCTIONS AND POWERS OF THE COMMISSION

4. Functions and powers of the Commission

Part III

DUTIES OF ENERGY CONSUMER

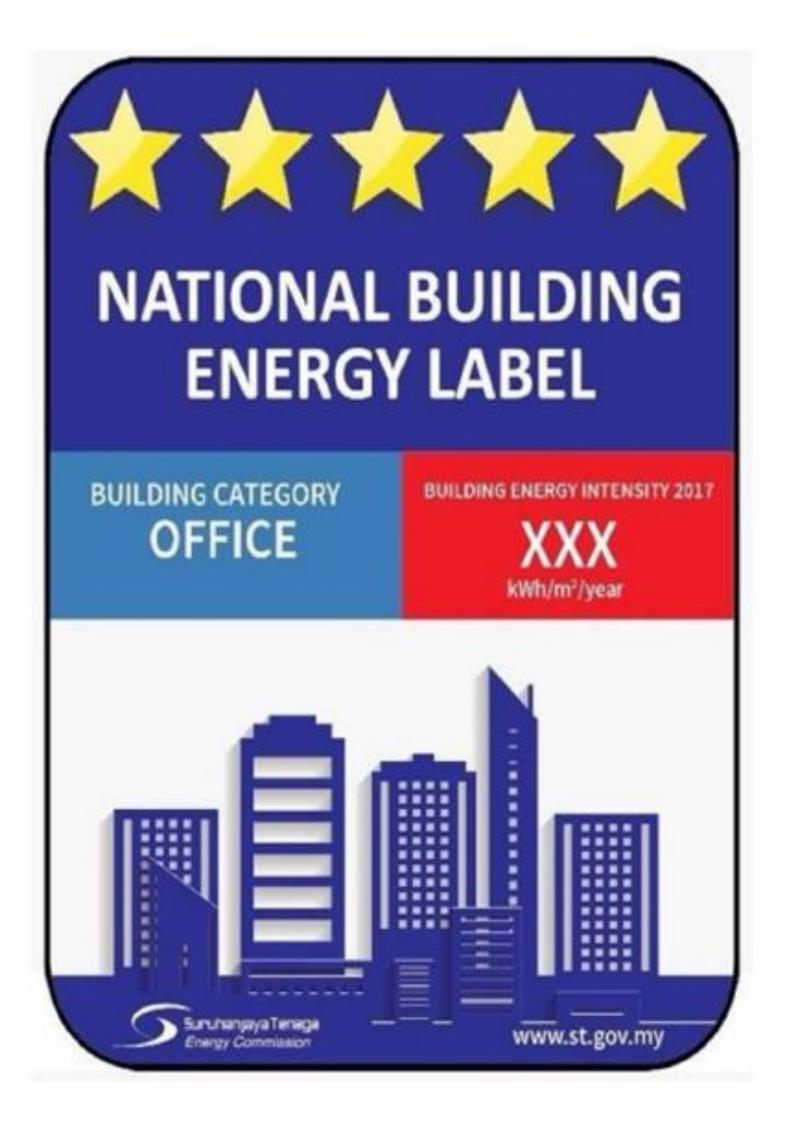
- 5. Appointment of registered energy manager
- 6. Energy management system
- Energy efficiency and conservation report 7.
- 8. Energy audit
- 9. Energy audit report

PART IV

DUTIES OF PERSON IN CHARGE OF BUILDING

- 10. Energy intensity label
- 11. Display of energy intensity label
- 12. Alteration, forgery, etc., of energy intensity label
- Energy intensity performance
- 14. Energy audit report in respect of building
- 15. Energy efficiency improvement plan
- 16. Non-application of sections 13, 14 and 15

BEI


Applicable > 8000m2 Up to RM100,000 Fine

STAR RATING	BEI RANGE	
STAK KATING	VALUE	
5-Star	BEI ≤ 100	
4-Star	100 < BEI ≤ 130	
3-Star	130 < BEI ≤ 160	
2-Star	160 < BEI ≤ 250	
1-Star	BEI > 250	

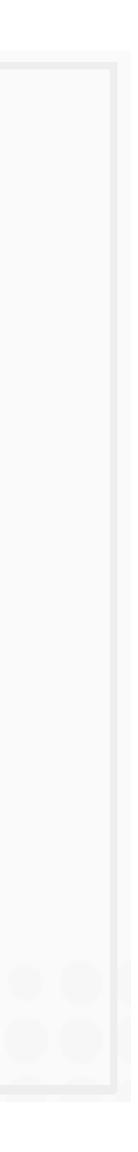
Educational Institute

Office Building

Hotel

Retail

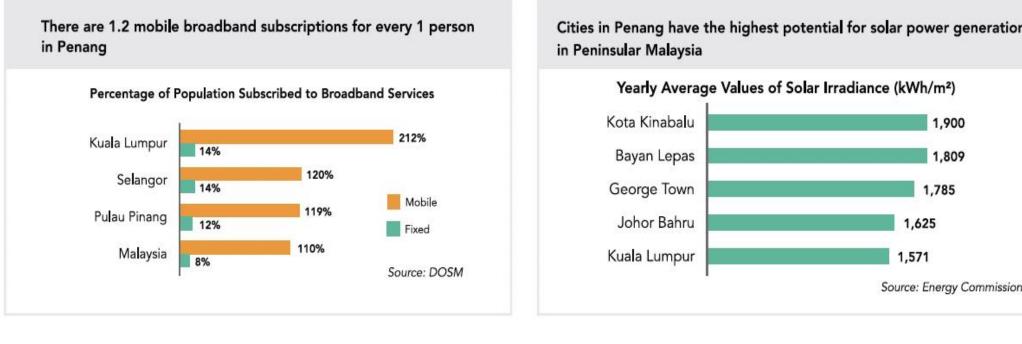
Data Centers

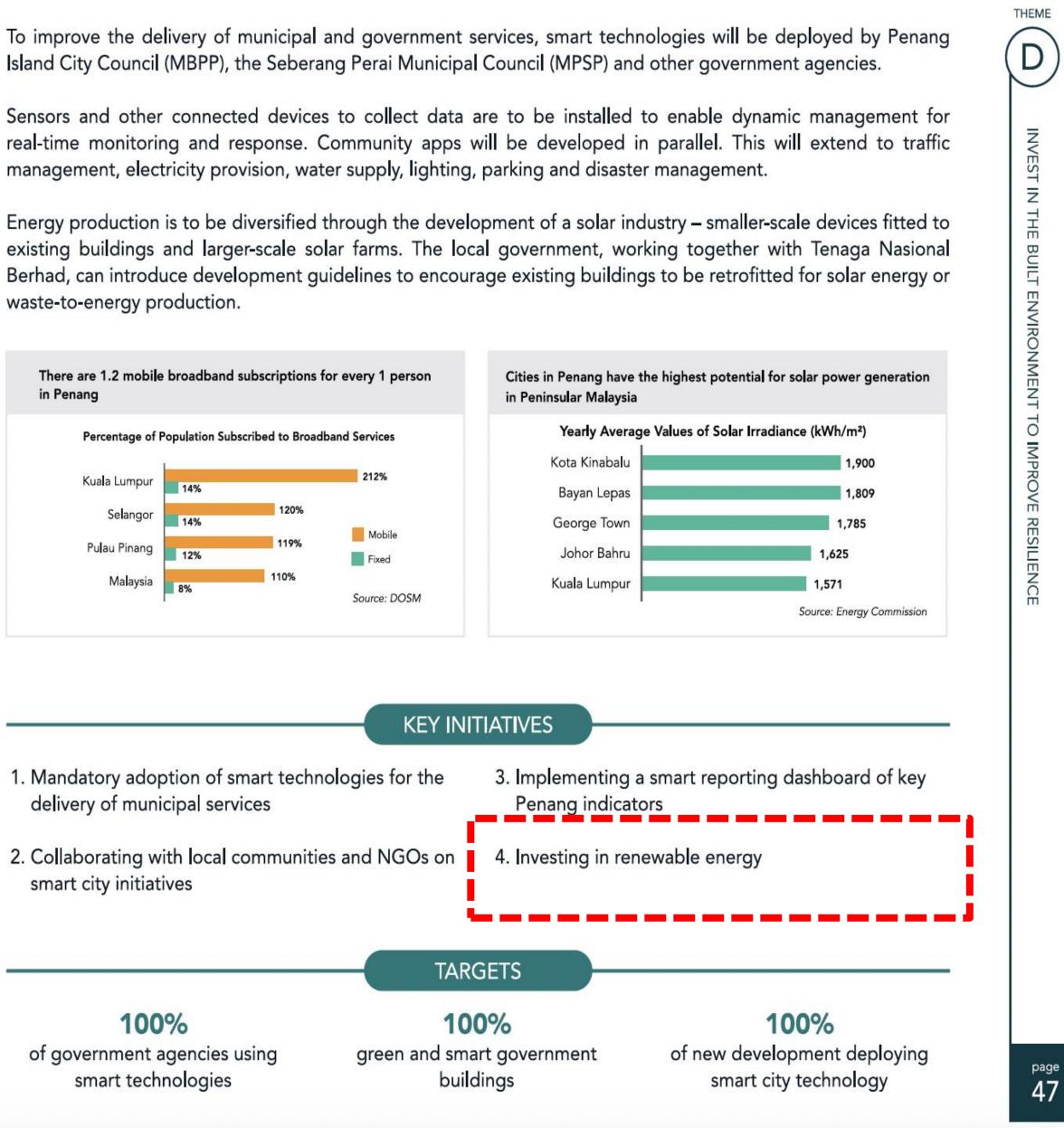


Technical Expert Working Group Members

- Ar Michael, Ching Chee Hong Malaysia Green Building Council
- Mr Tan Tze Meng Malaysia Digital Economy Corporation Sdn. Bhd 2.
- Ir Chen Thiam Leong PRIMETECH Engineers Sdn. Bhd.Malaysia 3.
- Mr Gregers Rehman IEN Consultants Sdn. Bhd. 4.
- Ts. Steve Anthony Lojuntin Sustainable Energy Development Authority (SEDA) 5.
- Assoc. Prof. Ir. Dr Nofri Yenita Dahlan Universiti Teknologi MARA (UiTM)
- **Ir. Lum Youk Lee** Persatuan Pengurusan Kompleks Malaysia (PPKM)

MPPP GBI Silver/Gold, RE50%

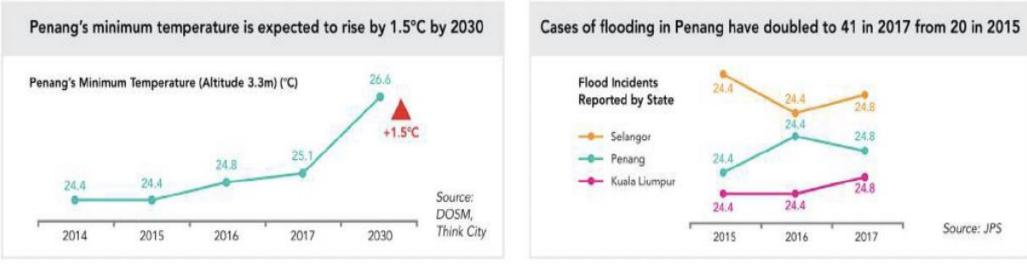

THEME D


Invest in the built environment to improve resilience

Island City Council (MBPP), the Seberang Perai Municipal Council (MPSP) and other government agencies.

management, electricity provision, water supply, lighting, parking and disaster management.

waste-to-energy production.



Despite its reputation as the state that manages its water resources most effectively, Penang nevertheless faces serious challenges in coming decades where water security is concerned. Plans are therefore being laid to secure steady sources for clean water.

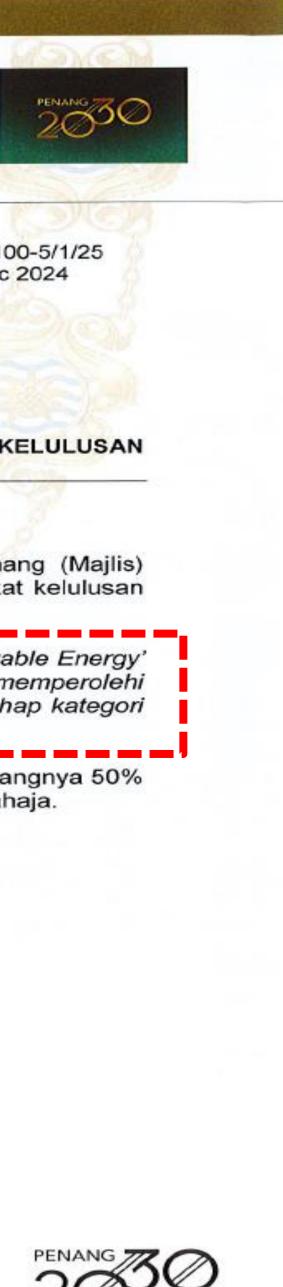
Penang is very vulnerable to climate change. The average temperature in urban Penang is predicted to rise by 1.5°C by 2030. A combination of increased temperature and flooding will affect the wellbeing of citizens and lead to cumulative economic losses of up to RM 6 billion by 2030.

Penang intends to lead the nation by developing Malaysia's first climate adaptation plan. This will be followed by initiatives focused on cooling urban areas through greening and flood-risk mitigation. Adoption of a 'sponge city model' – one that absorbs water naturally through more permeable surfaces – will go a long way towards reducing floods.

Existing disaster mitigation and management strategies will also be updated to incorporate the latest predictions on temperature and flooding associated with climate change.

KEY INITIATIVES

- 1. Partnering with international organisations to develop and implement climate adaptation plans
- 2. Piloting nature-based urban cooling initiatives
- 3. Adopting a sponge city approach to reduce flood risk
- 4. Updating disaster mitigation and management strategies to incorporate weather and flood risk



MAJLIS BANDARAYA PULAU PINANG JABATAN KAWALAN BANGUNAN PARAS 14, KOMTAR, JALAN PENANG, 10675 PULAU PINANG. TEL: 04-259 2188

Rujukan Kami : MBPP.JB.100-5/1/25 : 13 Mac 2024 Tarikh

SEPERTI SENARAI EDARAN

YBhg. Dato' / Datuk / Datin / Tuan / Puan,

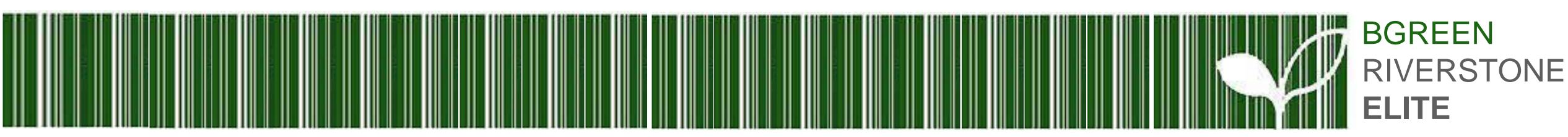
MAKLUMAN SYARAT TAMBAHAN YANG DIKENAKAN DI PERINGKAT KELULUSAN PERMOHONAN MERANCANG DAN PELAN BANGUNAN

Dengan segala hormatnya, saya diarah merujuk kepada perkara di atas.

Ingin dimaklumkan bahawa pihak Majlis Bandaraya Pulau Pinang (Majlis) 2. ingin memperjelaskan bahawa syarat berikut yang dikenakan diperingkat kelulusan Permohonan Merancang dan Pelan Bangunan iaitu :

'Cadangan pembangunan ini hendaklah menggunapakai ciri-ciri 'Renewable Energy' terutamanya penggunaan 'Solar Energy' sekurang-kurangnya 50% dan memperolehi sekurang-kurangnya pengiktirafan 'Green Building Index (GBI)' pada tahap kategori 'Gold / Silver',

adalah hanya tertakluk kepada penggunaan 'Solar Energy' sekurang-kurangnya 50% untuk kemudahan ruang-ruang hakmilik bersama (common area) sahaja.


Untuk makluman.Sekian, terima kasih.

"MALAYSIA MADANI" **"BERKHIDMAT UNTUK NEGARA"** "CEKAP, AKAUNTABILITI, TELUS"

Saya yang menjalankan amanah,

(HAJI RIZUWAN BIN SALLEH) Pengarah Kawalan Bangunan Majlis Bandaraya Pulau Pinang

Thank You

