Roof Insulation

RADIANT BARRIER / REFLECTIVE INSULATION FOIL LAMINATE INDUSTRIES SDN BHD

Foil Laminate Industries Sdn Bhd

- ► Founded year **1999**, **24 years** experience in manufacturing Radiant Barrier and Reflective Insulation
- Factory located at Bukit Minyak, Penang and Sales Office at Bandar Sunway, Selangor
- Sold more then 100 million meter length
- Member of Reflective Insulation Manufacturer of Malaysia (RIMM) under umbrella of FMM
- Award Asia Pacific Entrepreneurship Award 2016

Product Range

Product Range

Thermshield

Air Cond Ducting Insulation

Telecommunication

•WARN-U Underground Warning Tape

Thermal Insulation

- Insulating Blanket& Pallet Cover
- Thermal Packaging

Medical

• Emergency Rescue Blanket (ERB)

- Medi Shield Protect Wrap (Adult)
- Medi Shield Baby Wrap

Project Reference

High Technology & Semiconductor Small Medium Industry

Commercial Lot

Government Building

Warehousing & Logistics

Transport Hub

Residential

Education

Health Care Centre

Community & Cultural

Sport & Recreation

Others

Reflective ~ Protective ~ Excellence

International Market

Benefits of insulated roof

Improve comfort

Through IR Reflective property

Energy savings

Reduce energy consumption Saves electricity cost

Sustainability

Noise Reduction Insulation
Saves nation's limited energy resources

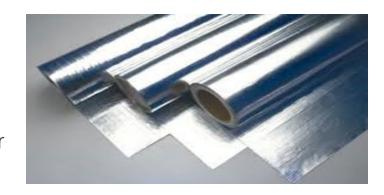
Healthier

Avoid dampness caused by condensationPrevent fungi growth

Roof Insulation

Aluminium Foil

Radiant Barrier


Reflective Insulation

What is the different

Radiant Barrier

A material with a low emittance surface, when its facing an open space is defined as radiant barrier system.

▶ Reflective Insulation

A thermal insulation system consisting of one or more low emittance surfaces, bounding one or more enclosed air spaces with measurable R-Value

MS 2095: 2022

How many types

>2 types

- 1. Single sided
- 2. Double sided

CERTIFICATION

Domestic Authorities Certification

BOMBA Certificate

SIRIM BS476 Part 6 & 7 Certificate

SIRIM MS2095:2014 Certificate

Green Certification

SIRIM ECO-LABEL

Certificate

Green Pages Malaysia

International Certification

TUV Certificate CSTB-M1 Certificate

MyHijau

- In Tandem with Malaysia Government's agenda to drive the growth of Malaysia's green economy, an announcement of green technology tax incentives in the Budget 2014 has been introduced where Malaysia Green Technology And Climate Change Corporation (MGTC) has been mandated to commence and verify on the Green Technology Incentives been offered.
- ► The purpose of this incentive is to strengthen the development of green technology through Green Investment Tax Allowances (GITA) for the purchase of green technology equipment / assets and Green Income Tax Exemption (GITE) for green technology service providers.
- ► To apply and more information, refer to the guidelines below https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-
 https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-
 https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-
 https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-
 https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-
 https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://www.myhijau.my/wp-content/uploads/2022/05/REC-GTGT-007-GUIDELINES-">https://w

JKR/SIRIM **STANDARD**

JKR/SIRIM 1:2017

ICS: 13.020.50; 91.100

Manual for **Green Product Scoring System**

- sub-section including the cost required for the services pro-
- 6.5. The Contractor shall submit documentary evidence of compliance with this subsection to the S.O. within one (1) month from the date of each delivery to the Site of such materials. of such materials, plant, equipment, vehicles or other goods.

Sustainable Materials and Products 7.

7.1. Notwithstanding the materials and products shown on the Drawings or specified herewith, the Contractor is encouraged to propose, at no additional cost, alternative equivalent materials or "Green" products to be used in the Works,

subject to the approval of the o.c.

- Environmentally friendly materials or "Green" products that are certified under the SIRIM Eco-Label certification or any labels under the Global 7.1.1. Eco-Label Network (GEN) certification.
- Product registered under MyHijau Mark Scheme.
- Products self-declared "Green" by the manufacturer with certification 7.1.3. from recognised independent certifying bodies and not a member of GEN.
- The contractor shall refer to SIRIM/JKR Standard on Manual for Green Product Scoring System (GPSS) for additional information on sustainable materials and products.

Roof Thermal Transmittance Value (RTTV) Calculation

RADIANT BARRIER (RB) / REFLECTIVE INSULATION (RI) FOIL LAMINATE INDUSTRIES SDN BHD

UBBL Amendment 2021

By-law 38, Energy efficiency in buildings.

[Amendment 2012]

- (1) A new or renovated non-residential building with air conditioned space exceeding 4,000 square metres --
 - (a) shall be designed to meet the requirements of MS 1525 with regards to the Overall Thermal Transfer Value (OTTV) and the Roof Thermal Transfer Value (RTTV); and
 - (b) shall be provided with an Energy Management System.

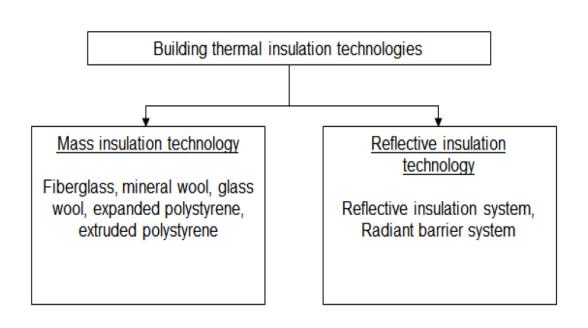
[Amendment 2012] [Amendment 2021]

- (2) The roof for all buildings (residential and non-residential) shall not have a thermal transmittance (U-value) greater than --
 - (a) 0.4 W/m²K for a light weight roof (below 50 kg/m²); and
 - (b) 0.6 W/m²K for a heavy weight roof (above 50 kg/m²), unless provided with other shading or cooling means.

[Amendment 2012] [Amendment 2021]

MS 1525 - Roof U-Value Major Changes

Y 2014 Roof Weight Group	Y 2019 Roof Type	Max. U-Value
Light (under 50kg/m²)	Light Weight (non concrete roof construction)	0.4
Heavy (above 50kg/m²)	Heavy Weight (concrete roof construction)	0.6



Clause 4.7: Thermal Insulation

Summary

- Use of both Mass and Reflective technologies is encouraged;
- Simple explanation on the relationships between thermal conductivity (k), thermal transmittance (U-value) and thermal resistance (R-value);
- Description of the differences between Mass Insulation technology and Reflective Insulation technology;
- Air space required for Reflective Insulation as part of its overall system or assembly R-value which relies on the low thermal conductivity of air;
- Description of the Reflective Insulation technology's principles of reflecting and re emitting radiant heat due to the properties of high reflectivity and low emissivity.

Clause 4.7: Thermal Insulation

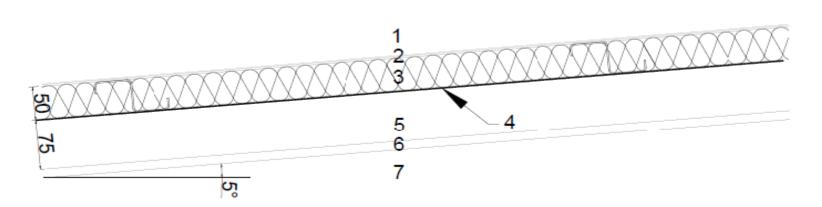
Relationship between thermal conductivity (k), thermal resistance (R) and thermal transmittance (U).

k = Thermal Conductivity

$$R = \frac{\text{Material Thickness, d}}{k}$$

$$U = \frac{1}{R} = \frac{k}{d}$$

Clause 4.7: Reflective Insulation Radiant Barriers


- Based on a composite system or assembly to derive R;
- Comprises of a low emissivity and high reflectance values;
- Reflective insulation relies on the low conductivity of air space bounded and adjacent to the low-e surfaces;
- Radiant barriers rely on large ventilated airspaces eg. attics;
- A combination of mass insulation and reflective insulation/radiant barrier is recommended.

Thermal Resistance Value Radiant Barrier

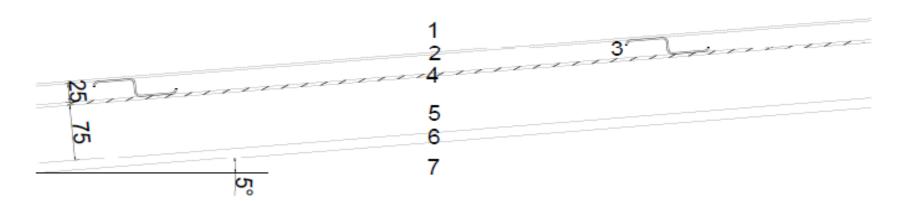
	Eg.	Description	RSI (m ² K/W)				
	а	Radiant Barrier	Evaluated in terms of reduced heat flux (W/m²)				
_	h	Radiant Barrier	Value depends on selected product E, roof				
_	b	Still Air Gap	angle and air gap depth				
		Still Air Gap					
	С	Double sided Radiant Barrier	Value depends on selected product £, roof angle and air gap depth				
		Still Air Gap					

	Element	Thermal Conductivity (W/mK)	Thermal Resistance (m²K/W)
1	External Air Film	-	0.0400
2	Metal Deck	47.600	0.0000
3	Mass Insulation *50mm x 40kg/m³	0.036	1.3889
4	Radiant Barrier *Single Sided (E=0.05 Facing Down)	-	0.0000
5	Rafter + Still Air Gap *75mm	-	1.1360
6	Plaster Board *13mm Thick	0.250	0.0480
7	Internal Air Film	-	0.1600
		Total R	2.7729
		U Value (1/R)	0.3606

Air Spaces & Attic Spaces RSI value

GUIDEBOOK ON HOW TO CALCULATE ROOF U-VALUES FOR LIGHTWEIGHT ROOF (REQUIREMENT UNDER UBBL 38A)

Table A2: RSI of enclosed air space for ε=0.05 (Reflectivity 95%: 5% Emissivity)

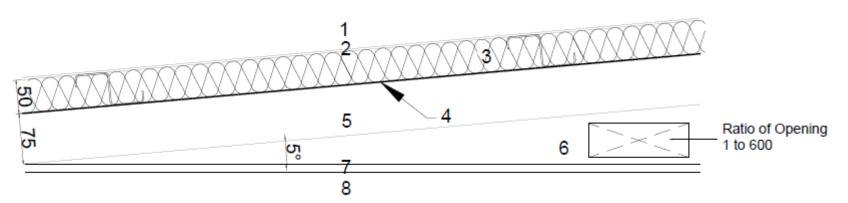

		RSI of Enclosed Air Space for Heat Flow Down at Tm=27.5°C, ε=0.05, ΔT=15°C (m²K/W)																								
			Enclosed Air Space (m)																							
		0.005	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	0.050	0.055	0.060	0.065	0.070	0.075	0.080	0.085	0.090	0.095	0.100	0.105	0.110	0.115	0.120	0.125
	0	0.180	0.341	0.484	0.607	0.712	0.804	0.885	0.956	1.019	1.075	1.125	1.171	1.212	1.249	1.283	1.313	1.340	1.364	1.386	1.406	1.424	1.440	1.454	1.468	1.480
	5	0.180	0.341	0.483	0.602	0.700	0.781	0.847	0.901	0.947	0.988	1.025	1.057	1.086	1.112	1.136	1.158	1.177	1.194	1.210	1.225	1.238	1.250	1.262	1.272	1.282
	10	0.180	0.341	0.482	0.597	0.688	0.759	0.812	0.852	0.885	0.915	0.940	0.963	0.984	1.003	1.020	1.035	1.049	1.062	1.074	1.085	1.095	1.105	1.114	1.123	1.131
	15	0.180	0.341	0.481	0.592	0.677	0.738	0.779	0.807	0.831	0.851	0.869	0.885	0.899	0.912	0.925	0.936	0.946	0.956	0.965	0.974	0.982	0.990	0.997	1.005	1.012
	20	0.180	0.341	0.480	0.588	0.666	0.718	0.749	0.768	0.783	0.796	0.808	0.818	0.828	0.837	0.846	0.854	0.862	0.869	0.876	0.883	0.890	0.897	0.903	0.909	0.915
	25	0.180		0.480															0.797	0.803	0.808	0.814	0.819	0.825	0.830	0.835
	30	0.180	0.341	0.479	0.579	0.645	0.682	0.696	0.699	0.702	0.705	0.708	0.711	0.715	0.719	0.723	0.727	0.731	0.736	0.740	0.745	0.749	0.754	0.759	0.764	0.769
	35	0.180	0.341	0.478	0.575	0.635	0.665	0.672	0.669	0.667	0.666	0.666	0.667	0.669	0.671	0.674	0.677	0.680	0.683	0.687	0.691	0.695	0.699	0.703	0.707	0.712
0	40	0.180	0.341	0.477	0.570	0.625	0.649	0.650	0.641	0.636	0.632	0.630	0.629	0.629	0.630	0.631	0.633	0.635	0.638	0.641	0.644	0.647	0.651	0.655	0.658	0.662
Angle	45	0.180		0.476																				0.612	0.616	0.620
Ā	50	0.180		0.475																					0.597	0.600
	55	0.180		0.474																					0.579	
	60	0.180		0.473																						
	65	0.180	0.341	0.471	0.540	0.555	0.554	0.545	0.536	0.530	0.525	0.523	0.522	0.521	0.522	0.523	0.524	0.526	0.528	0.530	0.533	0.536	0.539	0.542	0.546	0.549
	70	0.180	0.341	0.470	0.534	0.541	0.537	0.528	0.519	0.513	0.509	0.507	0.506	0.506	0.506	0.507	0.509	0.511	0.513	0.515	0.518	0.521	0.524	0.527	0.530	0.534
	75	0.180	0.341	0.469	0.528	0.529	0.521	0.511	0.503	0.498	0.494	0.492	0.491	0.491	0.492	0.493	0.495	0.497	0.499	0.501	0.504	0.507	0.510	0.513	0.516	0.519
	80	0.180	0.341	0.468	0.522	0.517	0.506	0.496	0.488	0.483	0.480	0.478	0.478	0.478	0.478	0.480	0.481	0.483	0.485	0.488	0.491	0.493	0.496	0.499	0.502	0.506
	85	0.180	0.341	0.467	0.516	0.505	0.491	0.481	0.474	0.470	0.467	0.465	0.465	0.465	0.466	0.467	0.468	0.470	0.473	0.475	0.478	0.481	0.483	0.486	0.490	0.493
	90	0.180	0.341	0.466	0.510	0.494	0.478	0.468	0.461	0.457	0.454	0.453	0.452	0.453	0.453	0.455	0.456	0.458	0.461	0.463	0.466	0.468	0.471	0.474	0.477	0.481

ε is surface emittance. Effective emittance, E is approximated as E=ε in most practical cases. (see Equation 6.2(3) in AS/NZ 4859.2:2018)

Thermal Resistance Value Reflective Insulation

Eg.	Description	RSI (m²K/W)				
а	Reflective Insulation	Value lies in the selected product itself				
	Reflective Insulation	Value lies in the selected product itself				
b	Still Air Gap	Value depends on the selected product £, roof angle and air gap depth				
	Still Air Gap	Value depends on the selected product &, roof angle and air gap depth				
С	Double Sided Reflective Insulation	Value lies in the selected product itself				
nt.	Still Air Gap	Value depends on the selected product £, roof angle and air gap depth				

	Element	Thermal Conductivity (W/mK)	Thermal Resistance (m²K/W)
1	External Air Film	-	0.0400
2	Metal Deck	47.600	0.0000
3	Purlin + Still Air Gap *25mm	-	0.7660
4	Reflective Insulation *Double Sided (Both Surfaces &=0.03)	-	0.3155
5	Rafter + Still Air Gap *75mm	-	1.3190
6	Plaster Board *13mm Thick	0.250	0.0480
7	Internal Air Film	-	0.1600
		Total R	2.6485
		U Value (1/R)	0.3776


Table A1: RSI of enclosed air space for ε=0.03 (Reflectivity 97%: 3% Emissivity)

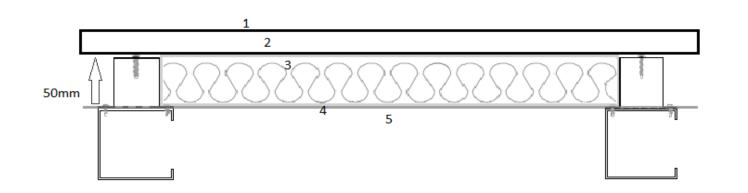
		RSI of Enclosed Air Space for Heat Flow Down at Tm=27.5°C, ε=0.03, ΔT=15°C (m²K/W)																								
		Enclosed Air Space (m)																								
		0.005	0.010	0.015	0.020	0.025	0.030	0.035	0.040	0.045	0.050	0.055	0.060	0.065	0.070	0.075	0.080	0.085	0.090	0.095	0.100	0.105	0.110	0.115	0.120	0.125
	0	0.184	0.356	0.514	0.655	0.780	0.892	0.992	1.082	1.164	1.238	1.305	1.366	1.422	1.474	1.521	1.564	1.602	1.637	1.669	1.698	1.724	1.747	1.769	1.788	1.806
	5	0.184	0.356	0.513	0.650	0.766	0.863	0.944	1.012	1.072	1.124	1.171	1.214	1.252	1.287	1.319	1.348	1.374	1.398	1.420	1.440	1.459	1.476	1.492	1.506	1.520
	10	0.184	0.356	0.512	0.644	0.752	0.837	0.901	0.950	0.993	1.030	1.062	1.092	1.118	1.142	1.165	1.185	1.203	1.220	1.236	1.251	1.265	1.277	1.290	1.301	1.312
	15	0.184	0.356	0.511	0.639	0.738	0.811	0.861	0.896	0.925	0.950	0.972	0.992	1.010	1.027	1.042	1.057	1.070	1.082	1.094	1.105	1.116	1.126	1.136	1.145	1.154
	20	0.184	0.356	0.510	0.633	0.725	0.788	0.825	0.847	0.866	0.882	0.896	0.909	0.921	0.933	0.943	0.954	0.963	0.973	0.981	0.990	0.999	1.007	1.015	1.023	1.030
	25	0.184		0.509		0.712															0.897	0.904	0.910	0.917	0.924	0.930
	30	0.184	0.356	0.508	0.623	0.700	0.744	0.761	0.764	0.767	0.771	0.775	0.779	0.783	0.788	0.793	0.798	0.803	0.808	0.814	0.819	0.825	0.831	0.837	0.842	0.848
	35	0.184				0.688																				
0	40					0.677																				
Angle	45	0.184				0.666																				-
Ā	50	0.184				0.646																			0.644	0.648
	55	0.184	0.356			0.628															0.608					
	60	0.184				0.611																		0.599		
	65	0.184				0.595																				
	70	0.184	0.356	0.499	0.571	0.580	0.574	0.564	0.554	0.548	0.543	0.541	0.539	0.539	0.540	0.541	0.543	0.545	0.547	0.550	0.553	0.556	0.560	0.563	0.567	0.571
	75					0.565																				
	80	0.184				0.551																				-
	85	0.184	0.356	0.495	0.551	0.538	0.523	0.512	0.503	0.498	0.495	0.493	0.493	0.493	0.494	0.495	0.497	0.499	0.502	0.504	0.507	0.511	0.514	0.517	0.521	0.524
	90	0.184	0.356	0.494	0.544	0.526	0.508	0.496	0.489	0.484	0.481	0.479	0.479	0.479	0.480	0.481	0.483	0.486	0.488	0.491	0.494	0.497	0.500	0.503	0.507	0.510

ε is surface emittance. Effective emittance, E is approximated as E=ε in most practical cases. (see Equation 6.2(3) in AS/NZ 4859.2:2018)

Thermal Resistance Value Attic Space

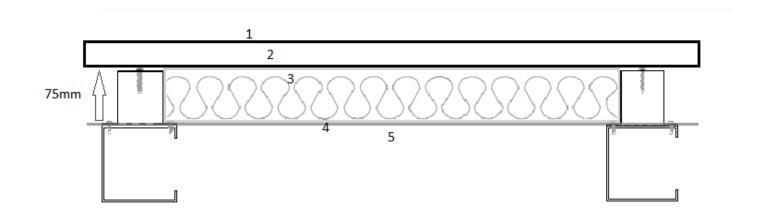
	Eg.	Description	RSI (m ² K/W)						
_		Reflective Insulation / Radiant Barrier	Value lies in the selected product itself						
_	a	Attic Space	Value depends on reflective / non reflective and ventilation / non ventilated						
		Still Air Gap	Value depends on the selected product £, roof angle and air gap depth						
	b	Double Sided Reflective Insulation / Radiant Barrier	Value lies in the selected product itself						
		Attic Space	Value depends on reflective / non reflective and ventilation / non ventilated						

	Element	Thermal Conductivity (W/mK)	Thermal Resistance (m²K/W)
1	External Air Film	-	0.0400
2	Metal Deck	47.600	0.0000
3	Mass Insulation *50mm x 40kg/m³	0.036	1.3889
4	Radiant Barrier *Single Sided (E=0.05 Facing Down)	-	0.0000
5	Rafter *75mm	-	0.0000
6	Attic Space (IR Reflective) *Ventilated	-	1.3600
7	Plaster Board *13mm Thick	0.250	0.0480
8	Internal Air Film	-	0.1600
		Total R	2.9969
		U Value (1/R)	0.3337


Table B: RSI of attic space with reflective or non-reflective surface

Source: AS/NZS 4859.2:2018 Table 14, Heat Flow Down.

	RSI (m²K/W)							
Airspace Type	IR Non-Reflective	IR Reflective						
Non-Ventilated	0.28	1.09						
Natural Ventilation	0.46	1.36						


- ❖ An Air space that has non-parallel bounding (irregular) surfaces.
- ❖ Reflective surface has an £ not greater than 0.05; Non reflective surface has an £ greater than 0.05
- Natural ventilation requires min. opening ratio 1:600 vented space; Non Ventilated refers no opening and / or opening ratio less than 1:600

	Element	Thermal Conductivity (W/mK)	Thermal Resistance (m²K/W)
1	External Air Film	_	0.040
2	Metal Deck	47.600	0.000
3	Mass Insulation *50mm x 40kg/m³	0.036	1.3889
4	BBS2FR-25 Big Bubble Foil	-	0.3155
5	Internal Air Film	-	0.8000
		Total R	2.5455
		U Value (1/R)	0.3929

	Element	Thermal Conductivity (W/mK)	Thermal Resistance (m²K/W)
1	External Air Film	-	0.040
2	Metal Deck	47.600	0.000
3	Mass Insulation *50mm x 40kg/m³	0.036	2.083
4	MF2-FR double sided reflective alu. foil	-	0.000
5	Internal Air Film	-	0.800
		Total R	2.923
		U Value (1/R)	0.342

8 AIR FILMS

The following applies:

(a) The thermal resistance of air films on outdoor surfaces shall be assumed to be $0.04~(m^2\cdot K)/W$.

NOTE: This assumes a wind speed of 3.0 m/s.

(b) The thermal resistance value of air films other than on outdoor surfaces shall be as given in Table 15 as appropriate.

NOTE: Still air values are reproduced with permission from AIRAH Handbook 2013, page 46.

TABLE 15 THERMAL RESISTANCE OF AIR FILMS

Surface orientation	Direction of heat flow	Resistance (m².K)/W	
		IR non-reflective	IR reflective
Horizontal	Up Down	0.11 0.16	0.23 0.80

Source: AS/NZS 4859.2:2018

Thank You

Joey Boo 012-432 6377 Darren Wang 012-706 8377