TOWARDS ZERO CARBON CITY

A RECAP OF OTTV AND ROOF U-VALUES

Ar Von Kok Leong
Past President MGBC
Director Arkitek MAA Sdn Bhd

TOWARDS ZERO CARBON CITY

OTTV

ROOF U-VALUES

NEW MS 1525 2019

(1) New or renovated **non-residential** buildings with **air-conditioned** space **exceeding 4,000 square metres** shall be –

a)designed to meet the requirements of MS 1525 with regards to the Overall Thermal Transfer Value (OTTV) and the Roof Thermal Transfer Value (RTTV); and

b) provided with an Energy Management System.

"non-residential" includes industrial, institutional, commercial, retail

"air-conditioned" means buildings with centralised aircond system

"exceeding 4,000 sm"

refers to the requirement for EMS, where
shophouses or small non-residential buildings even
though centralised aircond is employed, are
excluded from providing EMS.

(2) The roof for <u>all</u> buildings (residential and non residential) shall not have a thermal transmittance (U-value) greater than—

a)0.4 W/m²K for Light (under 50 kg/m²) weight roof;

b)0.6 W/m²K for Heavy (above 50 kg/m²) weight roof,

unless provided with other shading or cooling means.

UBBL Clause 38A

- (2) For all residential and non-residential buildings; the PSP shall endorse and submit the Roof U-value calculations incorporating the following documents;
- a) Plans and elevations of the roof used for the calculation marked in blue
- b) Description of roof materials specified
- c) Calculation of Roof U-value for all roof types
- d) <u>Description</u> and calculations of alternative means of compliance.

Implementation at **Building Plan** submission stage

- (1) For non-residential building where the air-cond space exceeds 4,000 m²;
- the **PSP** shall endorse and submit **OTTV & RTTV** calculations conforming to the latest version of MS 1525 (the 2007 and 2014 revisions stated the OTTV and RTTV shall not exceed 50 W/m² and 25 W/m² respectively).

The submitted calculations shall incorporate the following documents:-

UBBL Clause 38A

- a) Plans and elevations, marking out walls & apertures used for the calculation in blue colour; and walls & apertures not used for calculation in red. Recommended scale is 1:200;
- b) OTTV calculations for each facing wall/façade;
- c) <u>Description</u> of wall & aperture materials specified;
- d) <u>Calculation of U-values</u> for walls;
- e) Glazing specifications on Shading Coefficient and Uvalues;
- f) Confirm provision of Energy Management System.

green building index

UBBL Clause 38A

- The submitted plans and calculations endorsed by the PSP shall be deposited with the Local Authority (LA) <u>for</u> record. Self regulatory
- This arrangement is similar to the submission of building structural engineering calculations by the Submitting Person which is kept by the LA for record.
- Such deposited plans and calculations will only be retrieved for checking in the event of complaints received. Not part of approved endorsed BP drwgs
- The LA may carry out random check of these documents and calculations.

OTTV

VARIABLES OF OTTV

 $OTTVi=15\alpha(1-WWR)U_w+6(WWR)U_f+(194xCFxWWRxSC)$

1. α

2. WWR

3. Uw

3. Uf

4. OF

5. SC

These variables are some of the passive design parameters an architect is required to consider in the design of a building.

Plastered Brickwall

		THERMAL	THERMAL
		CONDUCTIVITY	RESISTANCE
		(W/mk)	(m² k/W)
1	External surface	nominal	0.044
2	External wall plaster, 13mm thk	0.57	0.023
3	Brickwall, 100mm thk	0.77	0.130
4	Internal wall plaster, 13mm thk	0.57	0.023
5	Internal surface	nominal	0.160
		Total R	0.380

U-value =
$$\frac{1}{R}$$

$$= \frac{1}{0.380}$$

Aluminium Composite Cladding without insulation

				11
		+		-
4	96	13	100	13

	THEBRANI	THEBRANI
	THERMAL	THERMAL
	CONDUCTIVITY	RESISTANCE
	(W/mk)	(m ² k/W)
External surface	nominal	0.044
ACP Cladding, 4mm	0.40	0.010
Cavity	nominal	0.090
External wall plaster, 13mm thk	0.57	0.023
Brickwall, 100mm thk	0.77	0.130
Internal wall plaster, 13mm thk	0.57	0.023
Internal surface	nominal	0.160
	Total R	0.480
	External wall plaster, 13mm thk Brickwall, 100mm thk Internal wall plaster, 13mm thk	External surface nominal ACP Cladding, 4mm 0.40 Cavity nominal External wall plaster, 13mm thk 0.57 Brickwall, 100mm thk 0.77 Internal wall plaster, 13mm thk 0.57 Internal surface nominal

U-value =
$$\frac{1}{R}$$

= $\frac{1}{0.480}$
= 2.083 W/m²k

k

R

Aluminium Composite Cladding with insulation

				11
4	96	25 13	100	13

	THERMAL	THERMAL
	CONDUCTIVITY	RESISTANCE
	(W/mk)	(m ² k/W)
1 External surface	nominal	0.044
2 ACP Cladding, 4mm	0.40	0.010
3 Cavity	nominal	0.090
4 Exp. Polystyrene board, 25mm thk	0.04	0.625
5 External wall plaster, 13mm thk	0.57	0.023
6 Brickwall, 100mm thk	0.77	0.130
7 Internal wall plaster, 13mm thk	0.57	0.023
8 Internal surface	nominal	0.160
	Total R	1.105

U-value =
$$\frac{1}{R}$$

= $\frac{1}{1.105}$
= 0.905 W/m²k

Recap OTTV

Revision to MS1525 2019

- 1) OTTV equations
- 2) Roof U-value equation
- 3) Solar Orientation Factors (OF)
- 4) RTTV equations
- 5) VLT > 30% recommended

OTTV

Additions

1) Added: OTTV shall apply to <u>all</u> external walls.

2) Added: each different wall type or different wall finishes or

different shading devices shall be calculated individually

for any given orientation.

3) Added: non-permanent shading devices (such as curtains or

blinds, or films applied on the surface of glass, or green

walls) shall not be considered.

4) Added: multiple roofs and definition of primary roof

5) Added: self-shading, or dynamic or complex shading devices

6) Added: descriptions of R1 and R2

Recap OTTV

Amendments and Omissions

1) Omitted: total air-cond area > 1,000 sm, in line with UBBL Cl 38A

2) Amended: new graphs for SC2 for horizontal, vertical shading devices

3) Amended: roof weight definition amended, where

Lightweight Roof = non-concrete construction, and

Heavyweight Roof = concrete roof construction

4) Omitted: 50kg/m2

5) Omitted: equation for the calculation of the average weight of roof.

6) Amended: PSP is mentioned in line with UBBL Cl 38A, instead of

"professional architect or professional engineer".

7) Amended: Section on Vestibules simplified, "exceptions" omitted,

and local terminology introduced.

Recap OTTV

2014

HORIZONTAL PROJECTION SHADING COFFICIENTS

R1 (Projection / Window Height)

green building index

OTTV

2014

VERTICAL PROJECTIONS SHADING COEFFICIENTS

Recap OTTV

green building index

OTTV

Roof U-value

Roof Weight Group	Maximum U-Value (W/m² K)
Non-Concrete Roof	0.4
Concrete Roof	0.6

R

	THERMAL	THERMAL
	CONDUCTIVITY	RESISTANCE
	(W/mk)	$(m^2 k/W)$
1 External surface	nominal	0.044
2 Cement screed, 50mm thk	0.41	0.122
3 Waterproof membrane	0.23	0.004
4 R.C Slab, 150mmthk	2.30	0.065
5 Internal surface	nominal	0.160
	Total R	0.395

U-value =
$$\frac{1}{R}$$

= $\frac{1}{0.395}$
= 2.532W/m²k

Roof U-value

R

		THERMAL	THERMAL
		CONDUCTIVITY	RESISTANCE
		(W/mk)	(m ² k/W)
1	External surface	nominal	0.044
2	Cement screed, 50mm thk	50	0.122
3	Waterproof membrane	0.23	0.004
4	Expanded polystrene, 60mm thk	0.04	1.500
5	R.C Slab, 150mmthk	2.30	0.065
6	Internal surface	nominal	0.160
		Total R	1.895

U-value =
$$\frac{1}{R}$$
= $\frac{1}{1.895}$
= 0.528 W/m²k

R

	THERMAL	THERMAL
	CONDUCTIVITY	RESISTANCE
	(W/mk)	(m ² k/W)
1 External surface	nominal	0.044
2 Steel decking & structure	50	0.00008
3 Cavity	nominal	0.090
4 Sisalation	4 06 x 30 x 50 x 30 x 60 x 60 x	
5 Plasterboard liner, 13mm thk	0.25	0.052
6 Internal surface	nominal	0.160
	Total R	0.346

U-value =
$$\frac{1}{R}$$

= $\frac{1}{0.346}$
= 2.890 W/m²k

k R

		THERMAL	THERMAL
		CONDUCTIVITY	RESISTANCE
		(W/mk)	(m² k/W)
1	External surface	nominal	0.044
2	Steel decking & structure	50	0.00008
3	Cavity	nominal	0.090
4	Sisalation		-
5	Mineral wool batt, 150mm thk	0.038	3.947
6	Plasterboard liner, 13mm thk	0.25	0.052
7	Internal surface	nominal	0.160
		Total R	4.293

U-value =
$$\frac{1}{R}$$

= $\frac{1}{4.293}$
= 0.233 W/m²k

Multiple Roof Types: Worst case applies

Plan View

Roof U-value

Secondary Roof

Plan View

Roof U-value

Secondary Roofs

Coverage of Secondary Roof? SRI (UHI)

Secondary Roof

Ventilation?

Habitable or non-habitable space

Primary Roof

Roof U-value applies here

Habitable space, Res, Non-Res, AC, Non-AC

Section

Building thermal insulation technologies

Mass insulation technology

Fiberglass, mineral wool, glass wool, expanded polystyrene, extruded polystyrene

Reflective insulation technology

Reflective insulation system, Radiant barrier system

Figure 14

A combination of both technologies is recommended

Roof U-value

Thermal Insulation

- 1) use of both technologies is encouraged;
- 2) simple equation for thermal conductivity (k), thermal transmittance (U-value) and thermal resistance (R-value);
- 3) description of the differences between Mass Insulation technology and Reflective Insulation technology;
- 4) air space required for Reflective Insulation as part of its overall system or assembly R-value which relies on the low thermal conductivity of air;
- 5) description of the Reflective Insulation technology's principles of reflecting and re-emitting radiant heat due to the properties of high reflectivity and low emissivity.

green building index

Roof U-value

Radiant Barrier

- **▶** Engagement with stake holders
- ► Confusion on the Air Gap R-Value in the Industry
- On-going discussion with Reflective Insulation Manufacturers of Malaysia (RIMM)
- ► Input from Market Leading Manufacturers
 - ► San Miguel Yamamura
 - **►**Monier
 - ▶Terreal

Roof U-value

Radiant Barrier

- ► GBI REQUIREMENT
- ► The Testing Method for the Radiant Barrier Air Gap to follow
 - MS 2095:2014 or an equivalent standard
- ▶ A Reduction Coefficient to Air Gap R-value will be applied by GBI until an in-depth experiment is conducted to conclude the findings

Roof U-value

Radiant barrier

- ► The 20% Reduction Coefficient to Air Gap R-value is due to:-
 - ► Angle of Roof Slope
 - ► Variable dimensions of Air Gap above and below the Radiant Barrier
 - ► The condition of the Site, viz cleanliness and dust in the roof space

Clay Tile Roof		
ltama	Original B Value	Revised R-Value
ltem	Original R-Value	(Reduction Air Gap of 20%)
External Surface Resistance	0.040	0.040
Clay Tile Roof	0.020	0.020
Insulation & Air Gap	1.970	1.576
Attic	0.650	0.650
Plaster Ceiling	0.056	0.056
Internal Surface Resistance	0.160	0.160
Total R Value	2.896	2.502
U Value (1/R)	0.345	0.400
Note: Attic Emittance R-Value prop	osed by RIMM	

TOWARDS ZERO CARBON CITY

THANK YOU